Land cover change and flood extent in Silang-Sta. Rosa sub-watershed

Milben A. Bragais^b, Brian A. Johnson^a, Damasa B. Magcale-Macandog^b, and Isao Endo^a Institute for Global Environmental Strategies , ^b University of the Philippines Los Baños

Overview

- The current (2014)¹ and future (2025)² land cover maps were generated and analyzed for flood modelling³.
- High resolution digital elevation model from LiDAR data⁴ was used to generate detailed terrain for accurate flood simulation.
- Findings from this study will be shared to the local government units to help make their land-use planning climate sensitive.

Input precipitation: 10 year Rain Return Period ⁵

Extreme Rainfall Event: Typhoon Ofel (Int. Name: Son-Tinh) Oct. 25, 2012; Duration: 12 hours; Amount: 224.4 mm **Collected** using Tipping Bucket Rain Gauge installed in Silang (Upstream)

Flood Modelling Major Inputs:

Key Messages

- The proposed land cover conversion will result to increased impervious area by 150% (from 3,929 has. to 9,822 has.)
- Increased impervious area will increase the flooded area by 22% (from 970 has. to 1,180 has.)
- The predicted increase in flooded area only accounts the land cover change scenario.
- According to DOST-PAGASA (2011)⁶, heavy daily rainfall events (exceeding 300mm) will continue to increase in number in most parts of the Philippines including Luzon where Silang-Sta. Rosa sub-watershed is located.
- The increase intensity and occurrence of extreme rainfall events due to climate change will further increase the number of flooded areas in the subwatershed.

¹Land cover classification using Landsat 8 satellite images (2014) courtesy of the United States Geologic Survey (USGS) with pixel size of 30 m ² Proposed future land cover (2025) of the Silang-Sta. Rosa sub-watershed was derived from the participatory mapping activity participated by the four involve local government units (cities of Santa Rosa, Biñan, and Cabuyao and the municipality of Silang).

³ Flood extent boundary generated using the Hydrologic Engineering Center-River Analysis System (HEC-RAS), a freeware designed and coded for the U.S Army Corps of Engineers that allows both one dimensional and two dimensional hydraulic analysis for steady and unsteady flow in rivers.

⁴ LiDAR (Light detection and ranging) data for the downstream part of the subwatershed was requested from the Phil-LiDAR project of the Philippine government for flood modelling and resource inventory using airborne LiDAR technology.

⁵ Based on Ambulong Station RIDF (Rainfall Intensity-Duration Frequency Curve) which has a 54 years record, prepared by Hydrometeorological Data Application Section (HMDAS), Hydro-Meteology Division, PAGASA

Acknowledgement: This paper is based on the outputs from the IGES pilot project entitled Making land-use climate sensitive: Improving local planning for mitigating and adapting to climate impacts supported by the Japanese Ministry of the Environment.