Co-benefits of co-control of climate change and air quality

Integrated assessment of Climate Change and Air quality policies in Korea

Yeora Chae

Korea Environment Institute

- Concept and framework of co-benefit
 - Co-benefit
 - The positive effects that a policy or measure aimed at one objective might have on other objectives, irrespective of the net effect on overall social welfare. (IPCC AR5)
 - AQ-Climate policy of a country shares various social goals with neighboring countries

- 정책에 대한 비용편익 분석시 공편익(Co-Benefit) 혹은 공비용 (Co-Cost)를 고려하였을 경우와 그렇지 않은 경우 사회적 적정 감 축 수준이 달라짐(Q^{*}_{PB} → Q^{*}_{PB+CB})
- 각 감축사업별 주편익(primary benefit)도 다른 뿐더러 공편익 및 공비용 역시 달라짐

Increased interest in co-benefit

Source: Mayrhofer, 2016

- The positive effects that a policy or measure aimed at one objective might have on other objectives, irrespective of the net effect on overall social welfare. (IPCC AR5 WGIII, 2014)
- Climate policy intersects with other societal goals creating the possibility of co-benefits or adverse side effect. [...] Mitigation and adaptation can positively or negatively influence the achievement of other societal goals, such as those related to human health, food security, biodiversity, local environmental quality, energy access, livelihoods, and equitable sustainable development; and vice versa, polices toward other societal goals can influence the achievement of mitigation and adaptation objectives. (IPCC AR5 WGIII SPM, 2014)

Major concerns in Korea

Disaster risk perception of citizens and experts in Seoul

• Present

- \rightarrow Citizens & experts: Air pollution (#1)
- \rightarrow Heat waves ranked: Citizens #2, Experts #3

• Future

- \rightarrow Heat waves: #1 from citizens, #2 from experts
- \rightarrow Air pollution: #2 from citizens, #3 from experts

The most risky disasters (Present)

Source: The Seoul Institute ('16, 10. 17.)

- Level of interest and perception of risks
 - Interests in PM and AQ, increased
 - → Interests and concerns about yellow dust and PM are higher than any other issue
 - → The levels of the fear for the potential risks and the government responsibility are similar

Level of interest and perception of risk factors

Source: reconstructed based on Han(2016)

0.0

1995

1990

2000

2005

■ CO2 ■ CH4 ■ N2O ■ HFCs ■ PFCs ■ SF6

2010 2012 2013 2014 2015

Source: National Institute of Environmental Research(2017)

10

KEI⁶ 한국환경정책·평가연구원 Korea Environment Institute

Catagory	Unit	National	Seoul Metropolitan Area				
Category	Unit	ivational	Total	Seoul	Incheon	Gyeonggi	Population
Area	Km ²	99 852 0	11,700.5	605.5	958.0	10,137.0	57 - 1186
	KIII	55,852.10	(11.72%)	(0.61%)	(0.96%)	(10.15%)	4383 - 9744
Population	Thousand	48 289	22,525	10,331	2,582	9,612	9745 - 15824
ropulation	mousunu	40,205	(46.65%)	(21.39%)	(5.35%)	(19.91%)	15825 - 24481
Population	Person/km ²	183	1,925	17,062	2,634	948	
Density	Personykin	465	(4 times)	(35 times)	(5.5 times)	(20 times)	and shah s
Gross		F.C.4 700	251,220	114,153	25,513	111,554	· · · · · · · · · · · · · · · · · · ·
product	Billion won	561,789	(44.72%)	(20.32%)	(4.54%)	(19.86%)	Colore Var
Compony	Number of	2 051 492	1,381,566	725,569	147,081	508,916	
Company	Company	5,051,482	(45.28%)	(23.78%)	(4.82%)	(16.68%)	I DIAN Linn
Employee	Dorson	14 226 604	7,175,802	3,878,833	699,233	2,597,736	Con the T
Employee	Person	14,550,004	(50.05%)	(27.06%)	(4.88%)	(18.12%)	A - PARTY - 1
Manufacturi	Number of	221 762	170,079	76,017	20,507	73,555	and the series
ng Company	Company	331,702	(51.27%)	(22.91%)	(6.18%)	(22.17%)	en en i sand for mas
Vahiala	Thousand	12 01/	5,983	2,550	697	2,736	r z z z
	mousanu	12,914	(46.33%)	(19.75%)	(5.40%)	(21.19%)	June Part

Research Structure

Cost Effectiveness of Air Pollution Policies

NO_x - CO₂

PM₁₀ - **CO**₂

PM₁₀ - **NO**_x

		Measure	Amount of CO ₂ Reduction (ton/year)
	Fuel Control	Switch anthracite coal to LNG	22,010
	Swi	tch to district heating	25,308
Area source	CES		5,191
	Alternative energy Solar power		225,400
		Total	277,909
		Electric car	80,329
	Low Emission Car	Hybrid car	164,034
Mobile		CNG BUS	425,869
source	LPG Remodeling		1,936
	Early Retirement		29,908
	Total		702,076
	Fuel Switch	B-C oil->LNG	2,042,097
Industry	Low-NOx Boiler		4,303,933
		Total	6,346,030
	То	tal	7,326,015

NOx, CO₂, PM₁₀ emissions reduction effect and costs

M

한국환경정책·평가연구원 Korea Environment Institute

NOx

Cumulative NO_x Emission Reduction(kt)

1. Heavy Oil Low-NO _x Boiler	2. CNG BUS	3. Switch to District Heating	4. Idling Control (Gasoli ne)
5. Idling Control (Die sel)	6. Fuel Switch B-C Oil - LNG	7. CES	8. Gasoline Car
9. NO _X BACT	10. LPG Car-Small Ca	11. LPG Car - Small	12. LPG Car - Small Truc
	r	Vans	ks
13. LPG Conversion -	14. Switch Anthracit	15. LPG Conversion	16. LPG Conversion – S
Medium Trucks	e Coal to LNG	– Small Trucks	mall Vans
17. Early Retirement	18. LPG Conversion	19. DPF Installation	20. DPF Installation-Van
– Small Trucks	g – Medium Vans	– Medium Vans	s (Urban BUS)
21. DPF Installation –	22. Early Retirement	23. Solar Power	24. DPF Installation-Van
Medium Trucks	– Medium Trucks		s (Reservation BUS)
25. DPF Installation –	26. DPF Installation –	27. Hybrid Car	28. Early Retirement – S
Vans (Misc. BUS)	Heavy Trucks		mall Vans
29. Early Retirement	30. Electric Car – Me	31. Early Retiremen	32. Early Retirement –
– Heavy Vans	dium RV (Diesel)	t – Heavy Trucks	Medium Vans

 \mathbf{CO}_2

Cumulative Cost(trillion won) 22 35 21 20 34 31,32 33 29,30 25 9,10 21 0 23,24 26 27,28 -4 22 8 13 15 16 1718 19 20 11,12 .14 23,567 -8 0 8 12 16 20 24 28 32

Cumulative CO₂ Emission Reduction(mt)

1. Switch to Distric t Heating	2. Idling Control (Ga soline)	3. Idling Control (Di esel)	4. Heavy Oil Low - N O _x Boiler
5. CNG BUS	6. Fuel Switch B-C oi I - LNG	7. Landfill gas re-us e	8. Switch anthracite coal to LNG
9. Solar Power	10. Electric Car – M edium RV (Diesel)	11. LPG Conversion -Medium Trucks	12. Early Retiremen t -Heavy Vans
13. Early Retireme nt -Heavy Trucks	14. CES	15. Hybrid Car	16. Early Retiremen t -Small Trucks
e17. Early Retirem ent -Medium Truc ks	18. LPG Conversion -Small Trucks	19. LPG Conversion -Small Vans	20. Early Retiremen t -Small Vans
21. LPG Conversio	22. Early Retirement		

Cumulative PM₁₀ Emission Reduction(kt)

1. Heavy Oil Low-NO _x Bo iler	2. Switch to District H eating	3. CNG BUS	4. Idling Control (Diesel)
5. Fuel Switch B-C Oil - L	6. PM ₁₀ BACT	7. LPG Conversion – Mediu	8. Switch B-C Oil (4%) - 0
NG		m Truck	.3%
9. Diesel Car-Large Vans	10. Diesel Car – Heavy	11. Switch B-C Oil (1%) - 0.3	12. DPF Installation – Va
	Trucks	%	ns (Urban BUS)
13. Diesel Car-Small Truc	14. DPF Installation –	15. DPF Installation – Vans	16. Early Retirement –
ks	Heavy Trucks	(Reservation BUS)	Medium Trucks
17. Diesel Car – Medium	18. Early Retirement	19. DPF Installation – Truck	20. Early Retirement – H
Trucks	– Heavy Trucks	s (Medium)	eavy Vans
21. DPF Installation - Va	22. Early Retirement	23. LPG Conversion – Small	24. Diesel Car – Medium
ns (Misc. BUS)	– Small Trucks	Trucks	Vans
25. Switch Anthracite Co	26. DOC Installation –	27. LPG Conversion – Small	28. LPG Conversion – M
al to LNG	Small Vans	Vans	edium Vans
29. Early Retirement -S	30. DPF Installation –	31. DOC Installation – Small	32. CES
mall Vans	Vans (Medium)	Trucks	
33. Early Retirement – Medium Vans	34. Electric Car – Med ium RV (Diesel)	35. Solar Power	

\mathbf{PM}_{10}

- GHG scenario: 10% GHG reduction compared to BAU
- SAQMP scenario: Air pollutants emission reduction to meet AQ target
- IES scenarios : GHG+SAQMP with minimum cost (optimized)

<Co-benefits of each scenario>

	CO ₂ emission	NO _x emission	PM ₁₀ emission	Fuel saving (trillion won)
BAU	103	354	17	
SAQMP	96	182	10	3.12
GHG	92	322	14	8.28

Benefit Estimation

Estimation of human health effects

Estimation of human health effects: Materials

GIS files (the Seoul Metropolitan Area)	• Grid – the levels of political boundaries for the SMPA	
Population Data	• Hamilton-Perry method	➤ BenMAP
Air pollution modeling data	 MM5/CMAQ model or the widely accepted air quality modeling method Pollutants – PM10, Nox Scenario – BASE 2004, BAU 2014, SAQMP 2014, GHG 2014 Result – Hourly concentrations under 	
	each Scenario	

Air quality modeling

Air Quality Modeling: CMAQ

Health Damage Estimation

<Estimated annual health benefits of deaths avoided from implementing the SAQMP>

Area		Lives saved (95% Confidence Interval)
	Seoul	3,508 (1,774~5,140)
Sub Area	Incheon	524 (263~776)
	Gyeonggi	1,663 (830~2,461)
Seoul M	etropolitan Area	5,695 (2,867~8,377)

<Estimated annual health benefits of deaths avoided from implementing the GHG>

Area		Lives saved (95% Confidence Interval)
	Seoul	358 (177~540)
Sub Area	Incheon	56 (28~84)
	Gyeonggi	175 (82~260)
Seoul N	letropolitan Area	589 (287~884)

Emissions Reduction Effects and Costs of each scenario

	NO _x emission	PM ₁₀ emission	CO ₂ emission	Cost	Human health benefit	CO ₂ emissions reduction benefit
BAU	354	17	103,085	0	0	0
SAQMP	182	10	95,758	295	14,260	87,912
GHG	322	14	92,745	-6,419	1,474	124,075
IES	182	7	92,441	-3,568	14,260	127,718

- Development of the inter-country policy analysis model to manage GHGs and Air quality
 - To update the relevant policies, plans of neighboring countries in order to achieve the policy goals of each country
 - To develop optimal policy mix considering co-benefits and mutual benefits
- Development of Social cost of GHGs and APs in NEA
 - Social cost needs to be developed reflecting NEA context.
- Development of win-win policy in NEA context

