BRIEFING ON CLIMATE CHANGE DOWNSCALING APPLICATION FOR FLOOD RISK MANAGEMENT

WATER MANAGEMENT | CLIMATE CHANGE

NATIONAL HYDRAULIC RESEARCH INSTITUTE OF MALAYSIA (NAHRIM) MINISTRY OF WATER, LAND & NATURAL RESOURCES

OUTLINE

- INTRODUCTION
- FLOOD AND CLIMATE SCENARIO
- SETTING THE CONTEXT CLIMATE PROJECTION
- WATER PLANNING FLOOD RISK MANAGEMENT
- CONCLUSION KEY MESSAGE
- WEB PORTAL HYDRO-CLIMATE DATA ANALYSIS ACCELERATOR

NAHRIM IN GENERAL 3

VISION

 To be the premier hydraulic research centre for water and its environment in the world by 2030.

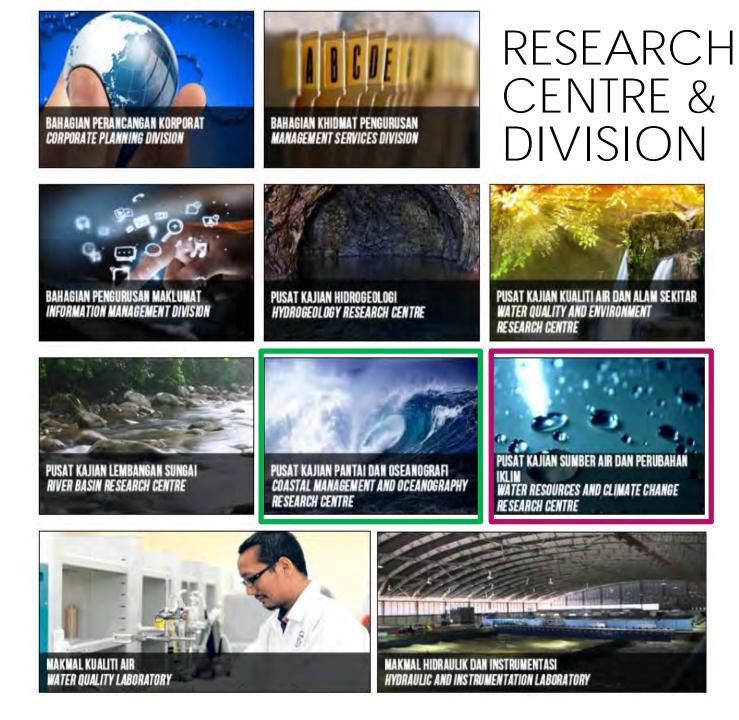
MISSION

 To provide excellent services as an expert centre on water and its environment management to ensure sustainable growth in order to improve the quality of life and well being

OBJECTIVES

- To be an excellent and main referral centre for water and it's environment.
- To be the national focal point to co-ordinate research activities in water and its environment
- To be the expert of consultancy service centre in development projects related to water and its environment.

NAHRIM's FUNCTION 4

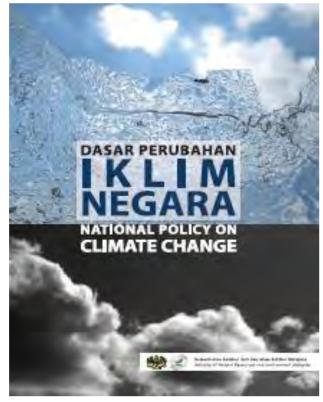

Providing expert consultancy services pertaining to water and its environment for the public and private sector

Providing advisory role in the water related field

Conducting basic and applied research within water sector such as river basin, water resources and climate change, coastal and oceanography, hydrogeology and water quality and environment

FUNCTIONS

As a referral centre for water and environment related research at the national level as well as participating actively in bilateral or multilateral research at international level


NATIONAL POLICY ON CLIMATE CHANGE, NPCC

- Established for ensuring climate-resilience development to fulfill national aspiration for sustainability
- Policy objective

mainstreaming climate change through wise management of resources and enhanced environmental conservation resulting in strengthened economic competitiveness and improved quality of life;

integration of responses into national policies, plans and programs to strengthen the resilience of development from arising and potential impacts of climate change;

Strengthening of institutional and implementation capacity to better harness opportunities to reduce negative impacts of climate change. - Green technology shall be a driver to accelerate the national economy and promote sustainable development;

Ministry of Land, Water and Natural Resources (KATS) Malaysia. Formerly known as Ministry of Natural Resources & Environment (NRE)

11^{TH} MALAYSIA PLAN (MP 11)

MP11 Climate Resilient Development

ISSUES AND CHALLENGE

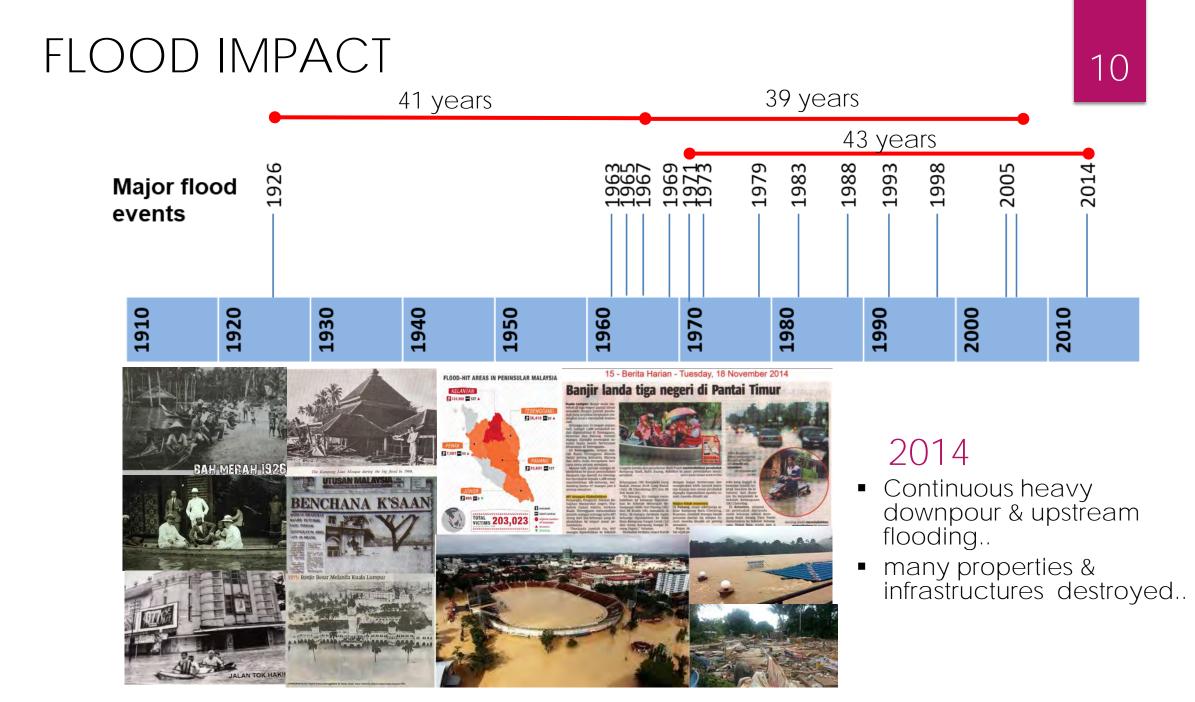
Climate change and environment degradation

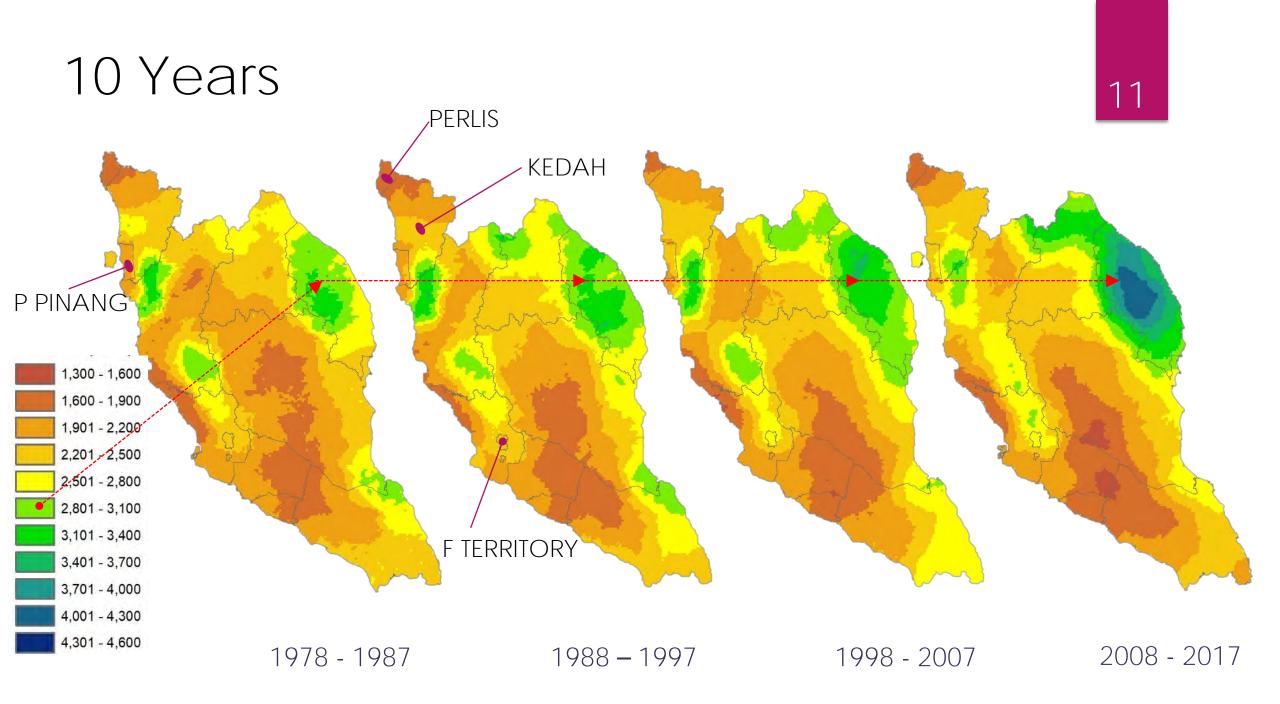
7

Governance in addressing issues of climate change and environment

2016-2020: WAY FORWARD

Strengthening enabling environment for climate change resilient Strengthening resilient against climate change and natural disasters Harnessing economic value through sustainable consumption and production practices


SDG – KATS COMMITMENT



OUTLINE

- INTRODUCTION
- FLOOD AND CLIMATE SCENARIO
- SETTING THE CONTEXT CLIMATE PROJECTION
- WATER PLANNING FLOOD RISK MANAGEMENT
- CONCLUSION KEY MESSAGE
- WEB PORTAL HYDRO-CLIMATE DATA ANALYSIS ACCELERATOR

MEAN YEARLY RAINFALL (MM) AND THE VARIATIONS FOR PENINSULAR MALAYSIA AND SABAH & SARAWAK

		20 YEARS		10 YEARS				
PENINSULAR MALAYSIA	40 years	1978-1997 (First 20-yr analysis period)	1998-2017 (Second 20-yr analysis period)	1978-1987 (First 10-yr analysis period)	1988-1997 (Second 10-yr analysis period)	1998-2007 (Third 10-yr analysis period)	2008-2017 (Fourth 10-yr analysis period)	
Mean Yearly Rainfall (mm)	2,360	2,339	2,413	2,283	2,357	2,366	2,447	
Increase/Decrease		-	+74 mm	-	+74 mm	+83 mm	+164 mm	
Percentage		-	(+3.2%)	-	(+3.2%)	(+3.64%)	(+7.2%)	
		20 YI	EARS	10 YEARS				
SABAH & SARAWAK	40 years	1978-1997 (First 20-yr analysis period)	1998-2017 (Second 20-yr analysis period)	1978-1987 (First 10-yr analysis period)	1988-1997 (Second 10-yr analysis period)	1998-2007 (Third 10-yr analysis period)	2008-2017 (Fourth 10-yr analysis period)	
Mean Yearly Rainfall (mm)	3,163	2,959	3,284	2,757	3,016	3,282	3,256	
Increase/Decrease		-	+325 mm	-	+259 mm	+525 mm	+499 mm	
Percentage		-	(+11.0%)	-	(+9.4%)	(+19.1%)	(+18.1%)	


MEAN MAXIMUM RAINFALL (MM) OF VARIOUS RAINFALL DURATIONS AND THEIR VARIATIONS FOR PENINSULAR MALAYSIA

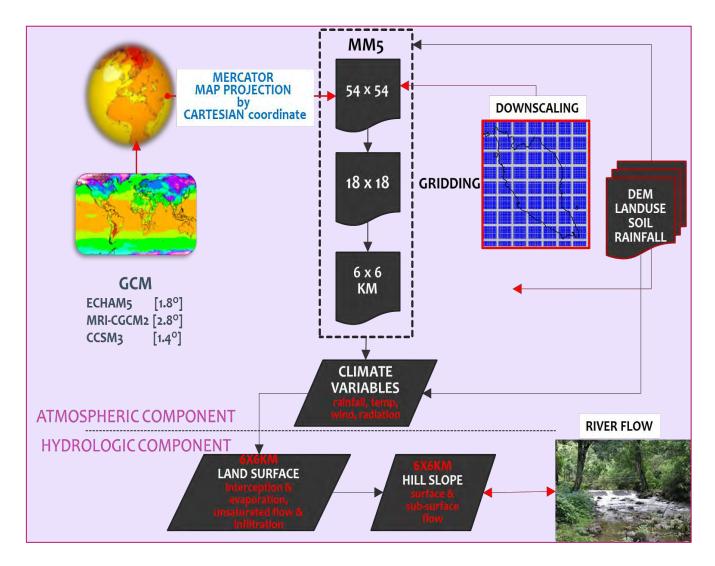
State	Analysis Periods	Period	15-min	30-min	1-hr	3-hr	6-hr	12-hr	1-day	2-day	3-day	5- day	7- day	14-day
	40-yr	1978-2017	33	50	67	88	103	120	135	175	203	247	282	381
		First Period	30	42	58	80	93	110	126	166	195	238	273	371
	20-yr	Second Period	34	51	69	91	105	122	143	182	211	254	290	390
	20-yi	Increase/Decrease	4	9	11	11	12	12	17	16	16	16	17	19
<u><u></u><u></u></u>		Percentage (%)	+13.3	+21.4	+19.0	+13.8	+12.9	+10.9	+13.5	+9.6	+8.2	+6.7	+6.2	+5.1
Peninsular Malaysia		First Period	32	44	59	81	93	109	124	165	195	240	275	374
Jal		Second Period	30	42	57	80	94	112	127	167	194	235	270	367
a L		Increase/Decrease	-2	-2	-2	-1	1	3	3	2	-1	-5	-5	-7
Insul		Percentage (%)	-6.3	-4.5	-3.4	-1.2	+1.1	+2.8	+2.4	+1.2	-0.5	-2.1	-1.8	-1.9
iu	10 yr	Third Period	34	50	68	92	107	124	139	177	205	249	283	381
Pe	10-yr	Increase/Decrease	2	6	9	11	14	15	15	12	10	9	8	7
		Percentage (%)	+6.3	+13.6	+15.3	+13.6	+15.1	+13.8	+12.1	+7.3	+5.1	+3.8	+2.9	+1.9
		Fourth Period	34	52	69	90	104	122	147	187	217	260	298	400
		Increase/Decrease	2	8	10	9	11	13	23	22	22	20	23	26
		Percentage (%)	+6.3	+18.2	+16.9	+11.1	+11.8	+11.9	+18.5	+13.3	+11.3	+8.3	+8.4	+7.0

OUTLINE

- INTRODUCTION
- FLOOD AND CLIMATE SCENARIO
- SETTING THE CONTEXT CLIMATE PROJECTION
- WATER PLANNING FLOOD RISK MANAGEMENT
- CONCLUSION KEY MESSAGE
- WEB PORTAL HYDRO-CLIMATE DATA ANALYSIS ACCELERATOR

CLIMATE CHANGE STUDY

• Study of The Impact of Climate Change on The Hydrologic Regime and Water Resources of Peninsular Malaysia (2006)


- Climate Projection Downscaling for Malaysia Using Hadley Centre PRECIS Model (2010)
- Study of the Impact of Climate Change on Sea Level Rise (SLR) in Malaysia (2010);
- Study of the Impact of Climate Change on Hydrologic Regime and Water Resources of Sabah and Sarawak (2010)
- Extension Study of the Impact of Climate Change on the Hydrologic Regime and Water Resources of Peninsular Malaysia (2014) – IPCC AR4
- Extension Study of the Impact of Climate Change on the Hydrologic Regime and Water Resources of Malaysia (Phase 2) – Climate Model Inter-comparison Project Phase 5 (CMIP5) 2017-2019

REGIONAL HYDRO CLIMATE MODEL PENINSULAR MALAYSIA & SS (REGHCM-PM-SS) 16

Dynamical

downscaling - globalscale atmospheric data at coarse spatial and temporal resolutions are transformed to regional scale of Peninsular Malaysia & SS

 Mesoscale atmospheric model component and a regional land hydrology model component that was utilized

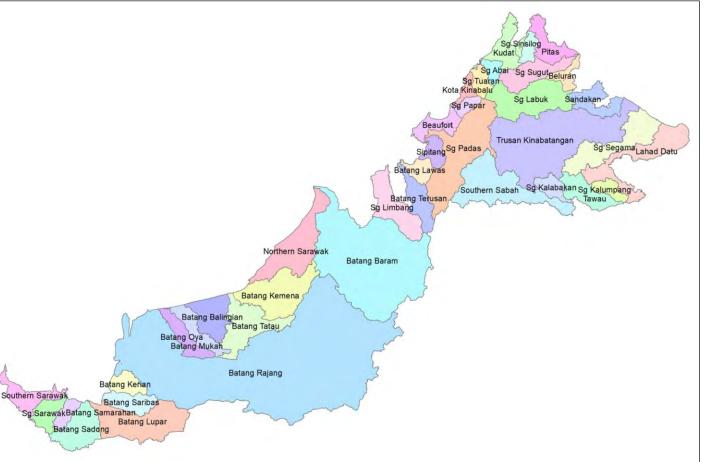
CLIMATE CHANGE SCENARIO

2014 CC STUDY

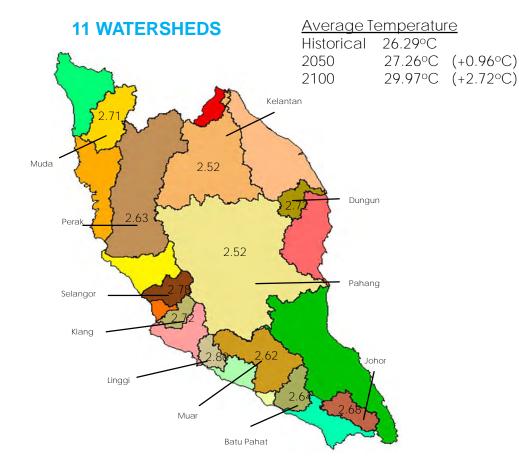
A total of 1440 years of GCM data were downscaled to the study region: 15 future projections, each 90 years long that were simulated by the coupled atmosphereocean global climate models ECHAM5, CCSM3 and MRI, and three 30 years long simulations during the historical period by the three GCMs

Model Name	Run ID	GCM Grid Resolution	Period	Model Name	Run ID	GCM Grid Resolution	Period
	20C	1.8 degree	1970-2000	MRI-	20C	2.8 degree	1970-2000
	SRES A1B_1	1.8 degree	2010-2100		200	2.8 degree	1970-2000
	SRES A1B_2	1.8 degree	2010-2100	CGCM2.3.2	SRES A1B	201	2010-2100
	SRES A1B_3	1.8 degree	2010-2100		SRES B1	2.8 degree	2010-2100
ECHAM5	SRES A2_1	1.8 degree	2010-2100		20C	1.4 degree	1070 2000
/MPIOM	SRES A2_2	1.8 degree	2010-2100		200		1970-2000
	SRES A2_3	1.8 degree	2010-2100	CCSM2	SRES A1B	1 4 dagraa	2010-2100
	SRES B1_1	1.8 degree	2010-2100	CCSM3	SRES A1FI	1.4 degree	2010-2100
	SRES B1_2	1.8 degree	2010-2100		SRES A2	1 4 dagmaa	2010-2100
	SRES B1_3	1.8 degree	2010-2100		SRES B1	1.4 degree	2010-2100

List of future projections for four **Representative Concentration Pathways** greenhouse gas emission scenarios


GCM	Scenario	Realization	Period
CCSM4	RCP4.5	r6i1p1	2006-2100
	RCP8.5	r6i1p1	2006-2100
MIROC5	RCP2.6	rlilpl	2006-2100
	RCP4.5	rlilpl	2006-2100
	RCP6.0	rlilpl	2006-2100
	RCP8.5	rlilpl	2006-2100
MRI-CGCM3	RCP4.5	rlilpl	2006-2100
	RCP8.5	rlilpl	2006-2100
GFDL-ESM2M	RCP2.6	rlilpl	2006-2100
	RCP4.5	rlilpl	2006-2100
	RCP6.0	rlilpl	2006-2100
	RCP8.5	rlilpl	2006-2100
IPSL-CM5A-MR	RCP2.6	rlilpl	2006-2100
	RCP4.5	rlilpl	2006-2100
	RCP6.0	rlilpl	2006-2100
	RCP8.5	rlilp1	2006-2100

16 future climate projections by 5 GCMs -CCSM4, MIROC5, MRI-CGCM3, GFDL-ESM2M, and IPSL-CM5A-MR) and 4 RCPs at 6 km spatial resolution for the duration of 2006-2100 over Peninsular Malaysia and Sabah-Sarawak


Peninsular Malaysia : 13 river basins Sabah – Sarawak : 25 river basins

6km x 6km spatial resolution grid

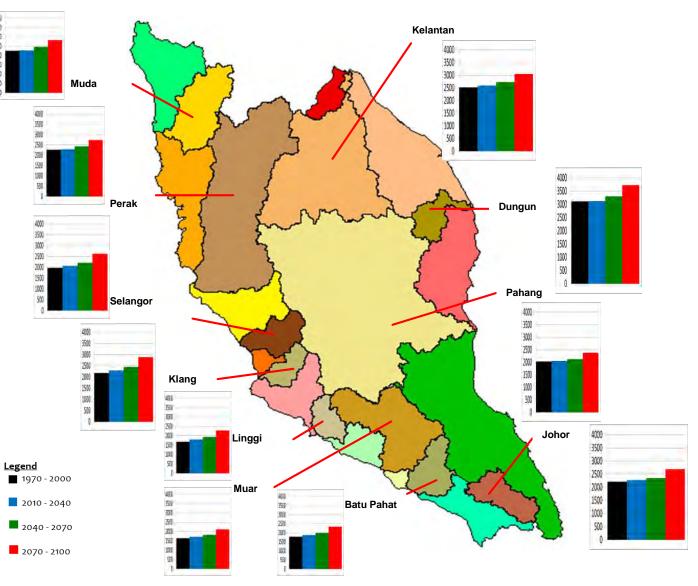
30-year Mean of Basin Average Surface Temperature by 2100

PENINSULAR MALAYSIA

12 COASTAL REGIONS

The annual mean air temperature increases more in the west coast area, and less in the mountainous area of Peninsular Malaysia.

30-year Mean of Basin Average Annual Precipitation


3500

3000 2500

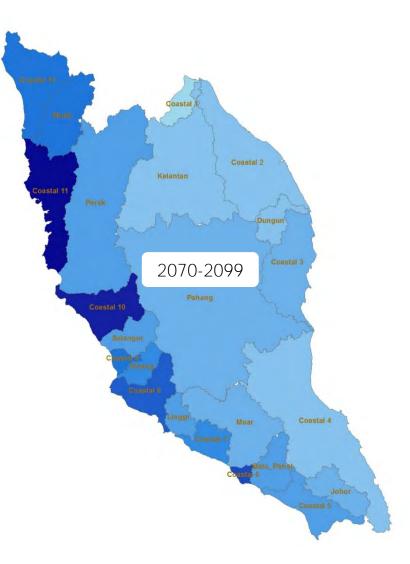
2000

Magnitude		
Period	30-yr Annual	Precipitation
	mm	%
2010-2040	12 - 121	0.4 - 6
2040-2070	96 - 278	5 - 13
2070-2100	348 - 714	17 - 33

11 catchments: ranging from 1.0 – 1.36 12 coastal region: ranging from 1.0 - 1.45

30-year Basin Average 1-Day Maximum Precipitation (NAHRIM, 2014)

Magnitude of Change


11 WATERSHEDS

Period	30-yr Annual Precip.				
Penoa	mm	%			
2010-2040	0 - 30	0 - 30			
2040-2070	3 - 20	6 – 27			
2070-2100	7 - 38	7 - 49			

12 COASTAL REGIONS

Period	30-yr Annual Precip.				
Penou	mm	%			
2010-2040	0 - 40	0 - 75			
2040-2070	2 - 52	2 – 79			
2070-2100	6 - 77	5 - 92			

21

Source: NAHRIM, 2014

Projected High and Low Flows by 2100 – Peninsular Malaysia

Low Flow (m³/s)

Watershed	2010-2100	1970-2000*	Rate of change
Muda	7.5	14.5	-48%
Selangor	117.7	12.2	-4%
Kelantan	52.3	92.7	-44%
Pahang	27.2	53.6	-49%
Johor	25.3	32.9	-23%
Linggi	1.0	2.6	-62%

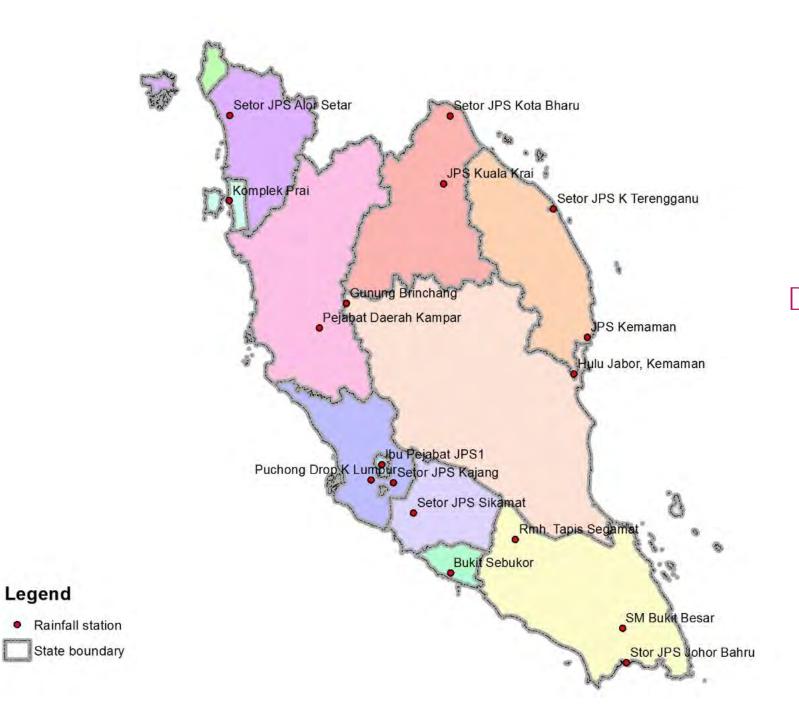
High Flow (m³/s)

Watershed	2010-2100	1970-2000*	Rate of Change
Muda	2702	509	+430%
Perak	9937	2658	+274%
Selangor	1195	583	+108%
Klang	319	148	+115%
Kelantan	10115	40875	+147%
Dungun	671	414.9	+62%
Pahang	4561	2748	+66%
Muar	2630	401	+556%
Batu Pahat	283.2	101	+180%

Note: 1970-2000* - simulated historical period

OUTLINE

- INTRODUCTION
- FLOOD AND CLIMATE SCENARIO
- SETTING THE CONTEXT CLIMATE PROJECTION
- WATER PLANNING FLOOD RISK MANAGEMENT
- CONCLUSION KEY MESSAGE
- WEB PORTAL HYDRO-CLIMATE
 DATA ANALYSIS ACCELERATOR


WATER PLANNING

1. Planning for Water Resources Management

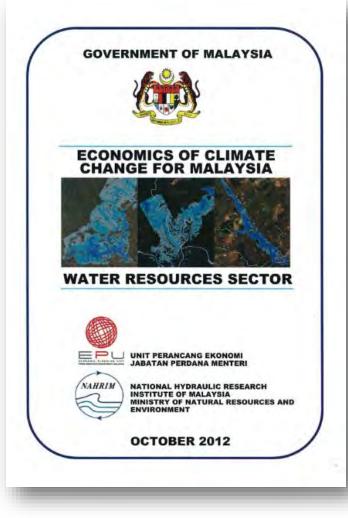
Water supply/demand assumptions are developed to portray the expected envelope of supply variability suitable for the given planning horizon.

2. Planning for Infrastructure Safety and Flood Risk Reduction

Infrastructure safety evaluations focus on rare events that could possibly cause facility failure and consequences that may include loss of life – climate change & variability

MAIN CONCERN: DECLINING THE DEGREE OF SAFETY LEVEL

1-day 100year Rainfall

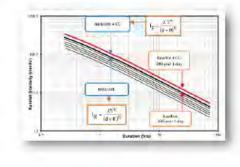

"Design storm is dead" (Sayers et al, 2015)

Storm sequences and clusters are important : repeat storms lowered beaches, weaken defences and lead failure

	Rainfall	Rainfall		Retu	n period (year)	
Station name	depth (mm)	intensity (mm/hr)		x1.2	x1.3	x1.4	x1.5
Pejabat Daerah Kampar	249	10.4	53	29	17	10	6
Setor JPS Kajang	225	9.4	55	32	20	12	8
Gunung Brinchang	167	7.0	56	33	20	13	8
Hulu Jabor	734	30.6	66	45	32	23	17
JPS Kemaman	536	22.3	62	40	27	19	13
Setor JPS K. Terengganu	629	26.2	64	42	29	20	15
JPS Kuala Krai	461	19.2	66	45	32	23	17
Setor JPS Kota Bharu	552	23.0	64	43	29	21	15
Bukit Sebukor	241	10.0	57	34	21	14	9
Komplek Prai	329	13.7	63	41	27	19	14
Setor JPS Alor Setar	262	10.9	58	34	21	14	9
Stor JPS Johor Bahru	244	10.2	56	33	20	13	8
Puchong Drop	203	8.5	53	30	18	11	7
Ibu Pejabat JPS1	214	8.9	51	29	17	10	7
Setor JPS Sikamat	207	8.6	57	34	21	13	9
SM Bukit Besar	296	12.4	61	39	26	17	12
Rmh. Tapis Segamat	317	13.2	65	44	31	22	16

.....overcome major challenges in <u>a</u> changing climate....

- How to integrate & coordinate issues of non-climatic and climatic forcing
- How to build resilience or adapt to climate change impacts
- Make decisions about how to use the Climate Change information

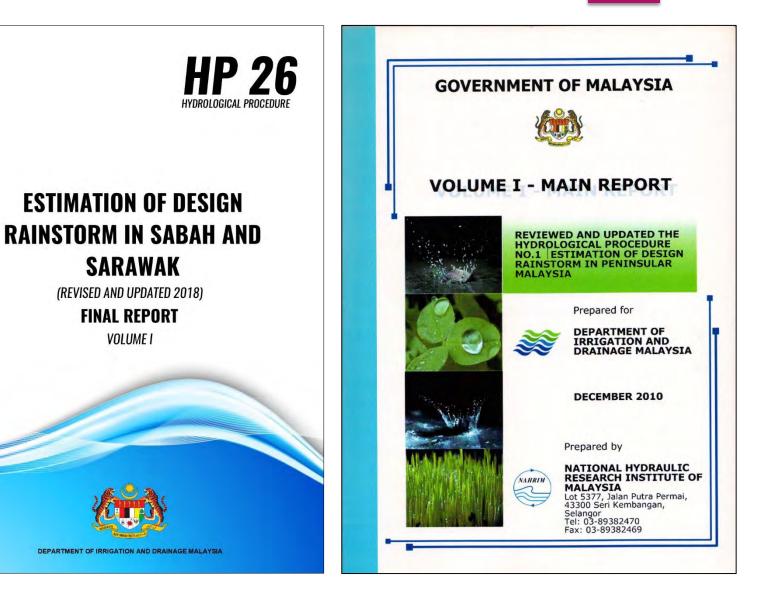


NAHRIM Technical Guide No. 1

27

TECHNICAL GUIDE

Estimation of Future Design Rainstorm under the Climate Change Scenario in Peninsular Malaysia



NATIONAL HYDRAULIC RESEARCH INSTITUTE OF MALAYSIA MINISTRY OF NATURAL RESOURCES AND ENVIRONMENT

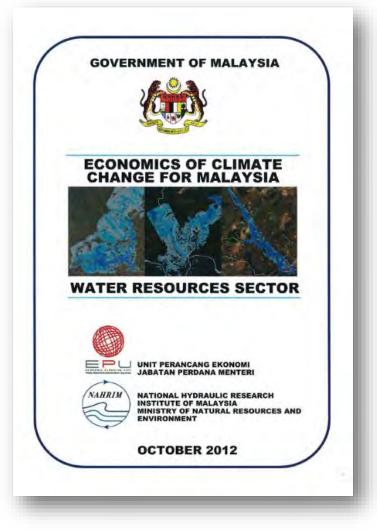
JANUARY 2013

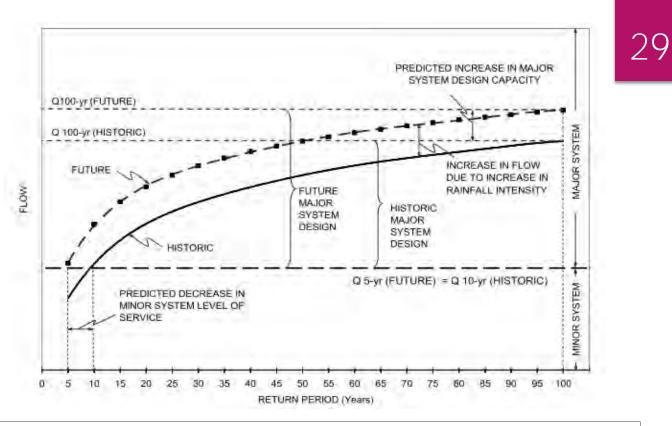
28

HP 26 HYDROLOGICAL PROCEDURE

SARAWAK

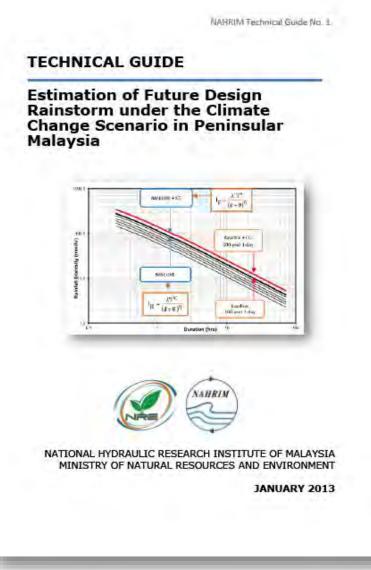
FINAL REPORT

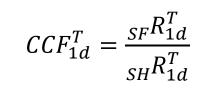

VOLUME I


ESTIMATION OF DESIGN RAINSTORM IN SABAH AND SARAWAK

(REVISED AND UPDATED 2018)

FORMULATION OF FLOOD RISK ASSESSMENT UNDER THE CHANGING CLIMATE

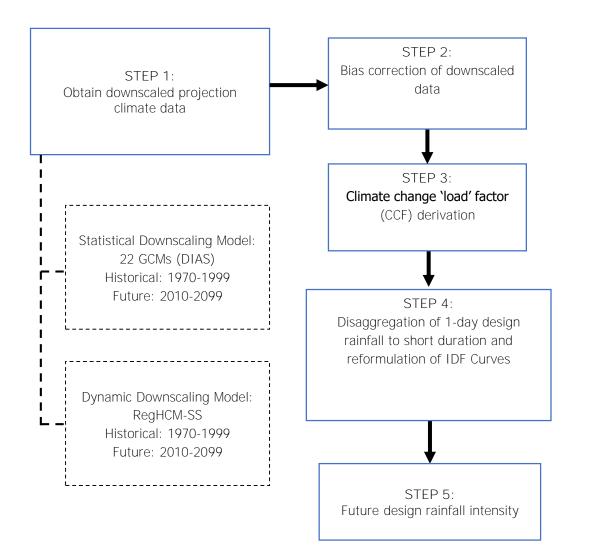


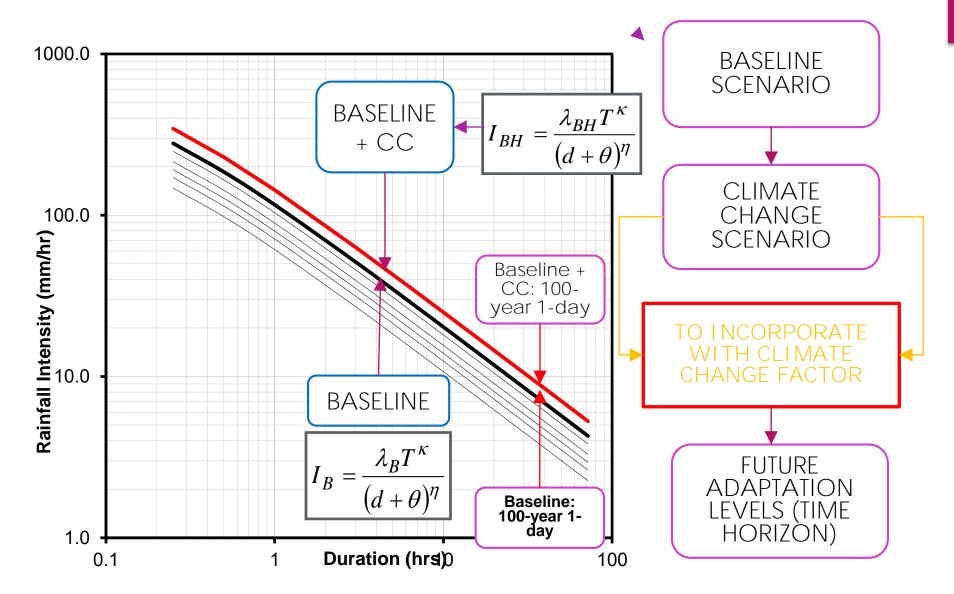

■ BASELINE: costs of providing flood mitigation based in 2050, WITHOUT CLIMATE CHANGE.

- BASELINE AND CLIMATE CHANGE: assumes that the costs of adaptation in the baseline will increase or decrease by the same percentage as the percentage change in magnitude of the 100-year
- □ CLIMATE CHANGE ONLY (CC): difference between baseline and baseline & CC scenario.

Pen Malaysia: Climate Change Factor (CCF) 30

defined as the ratio of the design rainfall for each of the future periods (time horizons) to the control periods (present rainfall)

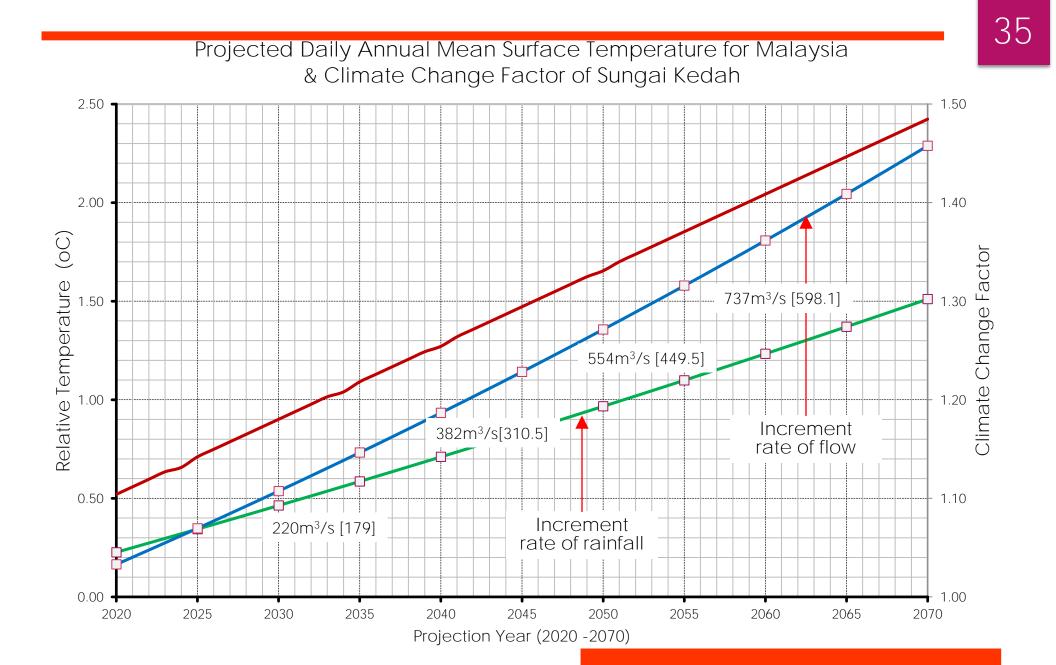

where


 $_{SF}R_{1d}^{T}$ = simulated future 1-day design rainfall $_{SH}R_{1d}^{T}$ = simulated historical 1-day design of control period

- Based on 2006 RegHCM-PM data & 18 statistically downscaled GCMs
- Embedded in DID Hydrological Procedure No. 1

Sabah & Sarawak : Developing the Climate Change Factor (CCF) 31

- Derivation of CCF is based on IPCC AR4 A₁B scenario.
- Three interpolated maps are produced based on GCMs (24nos) projected data combinations:
 - a) Average of IPCC AR4 A₁B ECHAM5 (ECHAM5_1, ECHAM5_2, ECHAM5_3)
 - b) Average of IPCC AR4 A_1B ECHAM5 and MRI
 - c) Average of IPCC AR4 A₁B ECHAM5, MRI and 22 GCMs
- Combination option (c) was selected since it utilizes all the scenarios from both DIAS (22 GCMs) and RegHCM (2GCMs) database. The produced results are more accurate than other GCM combinations.


ANALYSIS OUTCOME: WATER RESOURCES SECTOR DESIGNED FLOOD PEAKS – SG KEDAH

(a)	(b)	(C)		100)-Year ARI				
Item	Time Horizon	Climate Change	(d)	Sim	Simulated Flood Magnitude, Qp (Baseline= 2047.9m ³ /s)				
		Factor (CCF)	1-Day Design Rainfall (Baseline= 240.6 mm)	(e) Baseline & Future Landuse Scenario	(f) Baseline & Climate Change Scenario	(g) Baseline & Climate Change with Future Landuse Scenario			
1	2020	1.05	245.2	2202.6 [154.7]	2111.2 [63.3]	2313.7 [265.8]			
2	2030	1.09	256.5	2209.0 [161.1]	2267.9 [220.0]	2438.0 [390.1]			
3	2040	1.14	268.0	2215.9 [168.0]	2430.2 [382.3]	2613.8 [565.9]			
4	2050	1.19	280.0	2223.1 [175.2]	2601.9 [554.0]	2799.9 [752.0]			
5	2060	1.25	292.6	2230.1 [182.2]	2785.3 [737.4]	2997.6 [949.7]			

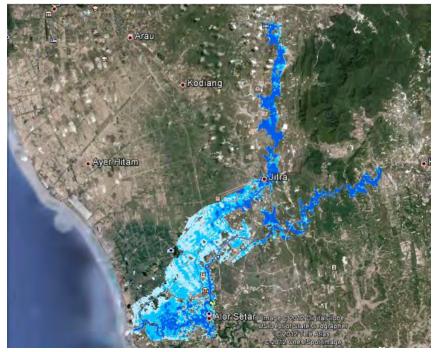
Note: [] – flood magnitudes adaptation value

(a)	(b)	(C)	Peak Disc	charges (0) 1	00 vears ARI	for Suna	ai Kedah			
Item	Time Horizon	Climate Change		Peak Discharges (Q) 100 years ARI for Sungai Kedah						
		Factor (CCF)	(d) 1-Day Design Rainfall (Baseline= 240.6 mm)	(e) Baseline & Climate Change Scenario Flood Magnitude, Qp (Baseline= 2047.9 m ³ /s)	(f) Climate Change Scenario Floods Magnitude (m3/s)	(g) Discharge Ratio	(h) Discharge per Area (m3/s/km2)			
1	2020	1.05	245.2	2111.2	63.3[3.1]#	1.03	0.75			
2	2030	1.09	256.5	2267.9	220.0[10.7]	1.11	0.81			
3	2040	1.14	268.0	2430.2	382.3[18.7]	1.19	0.87			
4	2050	1.19	280.0	2601.9	554.0[27.1]	1.27	0.93			
5	2060	1.25	292.6	2785.3	737.4[36.0]	1.36	0.99			

Note: [3.1][#] denotes as percentage of change in flood magnitude due to increasing in design rainstorm.

Generated Flood Extent Map Location: Sg Kedah Landuse: Future Rainfall: 2060, 100y ARI

Time	Area for flood depth (km ²)				5
horizon	0.01 -	0.5 -	>1.2 m	Sum	1
	0.5 m	1.2 m			1.1
Baseline	50.50	41.55	35.57	127.62	


Legend River Projected Flood Depth (m) 0.0 - 0.5 0.5 - 1.2 >1.2

Flood Damages: Baseline and Future (Climate Change Impact)

37

2060 (Sungai Kedah, 100 years ARI)

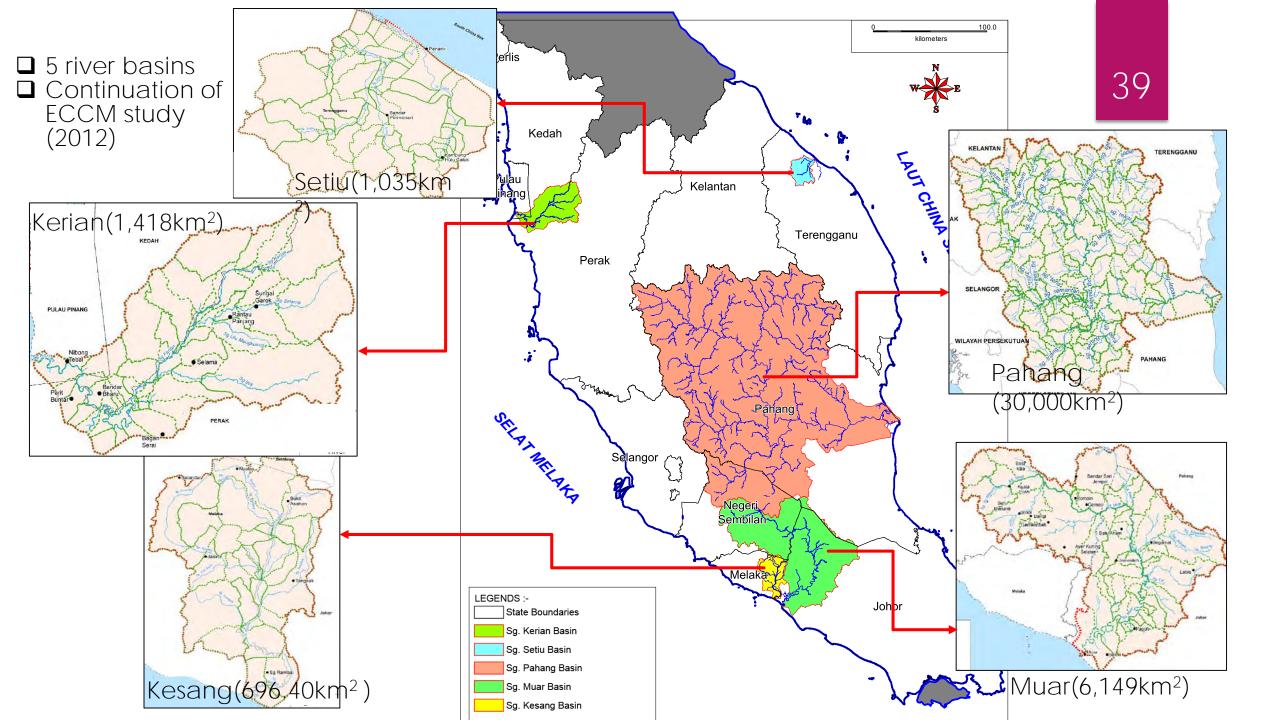
Flood Inundated Area by Flood Depth Sungai Kedah Basin

flood depth	Sungai Kedah (are	a of flood depth, km2)
	Baseline	2060
0.0 - 0.5 m	50.5	48.16
0.5 - 1.2 m	41.55	50
>1.2 m	35.57	46.95
Total	127.62	145.11 👔

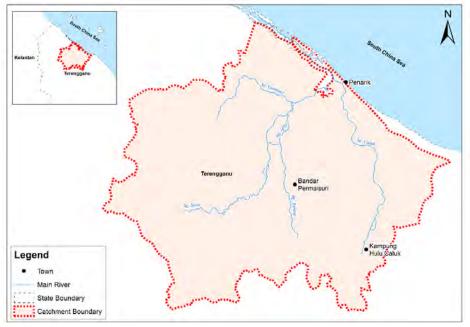
Impact of Floods in the Sq Kedah Basin

Estimated Flood Damages	2010	2060
Total Flood Damages (RM mil)	503	7,047
Damages to Paddy	78	705
Damages to Residential & Commercial	244	2,886
GDP	2010	2060
State GDP (RM mil)	18,637	103,989
GDP for Agriculture Sector (RM mil)	1,556	5,221
GDP for Services Sector(RM mil)	8,151	67,994
ARI 100 Estimated Flood Impact	2010	2060
Total Flood Damages / State GDP (%)	2.7%	6.8%
Damages to Paddy / GDP for Agriculture Sector	4.2%	13.5%
Damages to Residential & Commercial / GDP for Services Sector	2.4%	4.2%
AAD Estimated Flood Impact	2010	2060
Total AAD Flood Damages / State GDP (%)	0.1%	0.1%
Annual Average Damage (RM mil)	27	74

The impact of the 2010 floods on

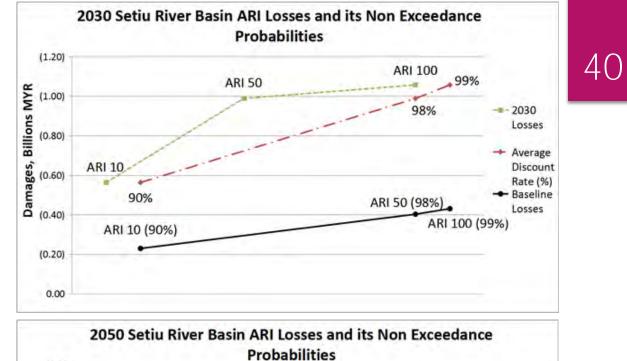

38

Kedah's economy


- The total flood damage for this flood episode was 2.7% of Kedah's GDP.
- Damage to the paddy sector was 4.2% to the state's Agriculture sector GDP.
- In terms of the service sector, the estimate is 2.4% loss of output, based on the 2010 GDP structure for Kedah.

By 2060

- The worst flood impact arising from the change in climate factors would increase from 2.7% in 2010 to 6.8% in 2060.
- Damage to the agricultural sector will rise from 4.2% to 13.5% if paddy planting were maintained at current levels.


Setiu River Basin

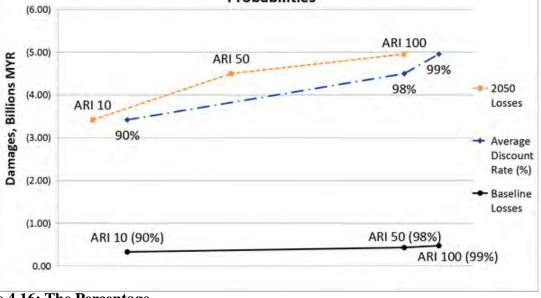


Table 4.14: Minimum Flood Losses for different ARI categories

ARI (year)	10	50	100
Baseline losses	16,055,547	20,054,641	20,062,615
2030 Scenario	39,396,561	49,209,402	49,228,968
2050 Scenario	169,311,976	211,862,441	213,894,254

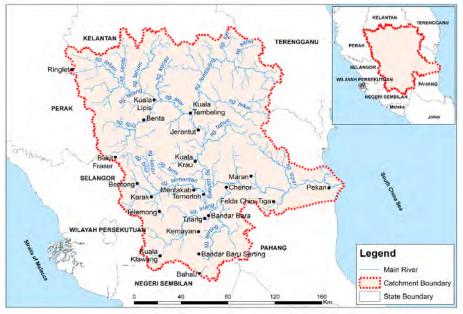

	BASELINE	2030	2050
	Percentage	Percentage	Percentage
Residential Houses	35.7%	31.7%	32.5%
Government Building	1.7%	1.6%	1.6%
Agricultural Sector	5.0%	4.3%	4.5%
Public Infrastructure	0.6%	0.5%	0.5%
Commercial Building	57.0%	61.8%	60.9%

Table 4.16: The PercentageDistribution of Assets Losses

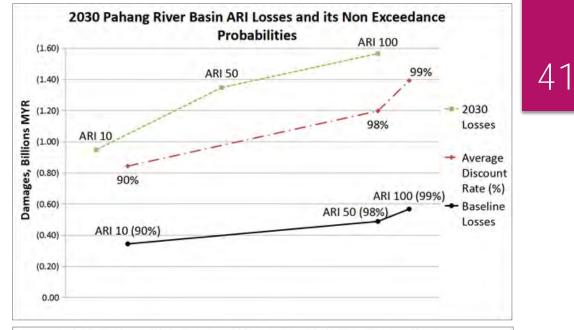

Pahang River Basin

Table 4.18: Minimum Financial Losses (baseline) for differentARI categories

ARI (year)	10	50	100
Baseline losses	386,509,467	548,600,150	637,812,190
2030 Scenario	948,403,887	1,346,136,534	1,565,042,028
2050 Scenario	5,865,498,764	7,756,805,896	11,499,394,356

	BASELINE	2030	2050
	Percentage	Percentage	Percentage
Residential Houses	40.0%	36.7%	23.4%
Schools/ Universities	0.2%	0.2%	0.1%
Government Building	0.8%	0.9%	0.5%
Agricultural Sector	3.3%	2.7%	1.6%
Public Infrastructure	0.6%	0.5%	0.3%
Commercial Building	55.0%	59.1%	74.0%

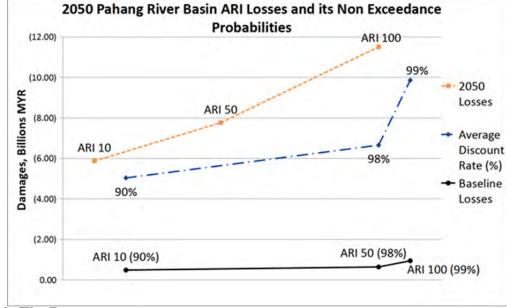
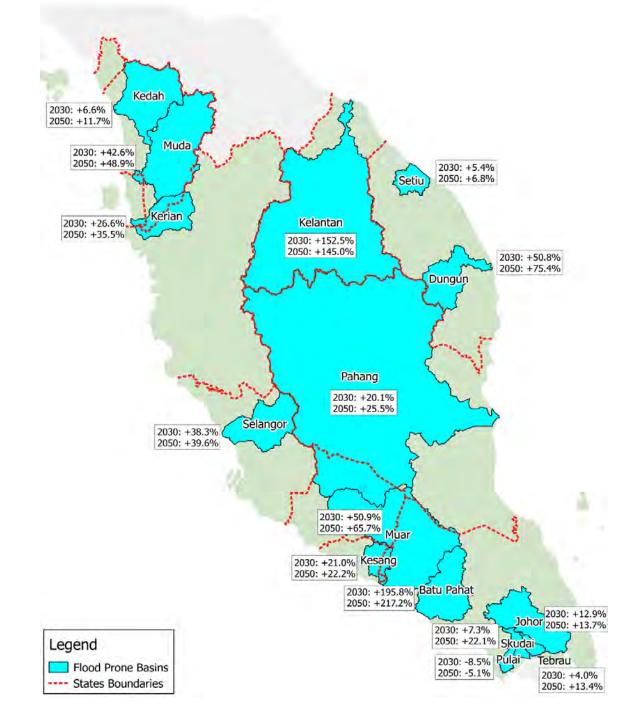


Table 4.20: The PercentageDistribution of Assets

Losses

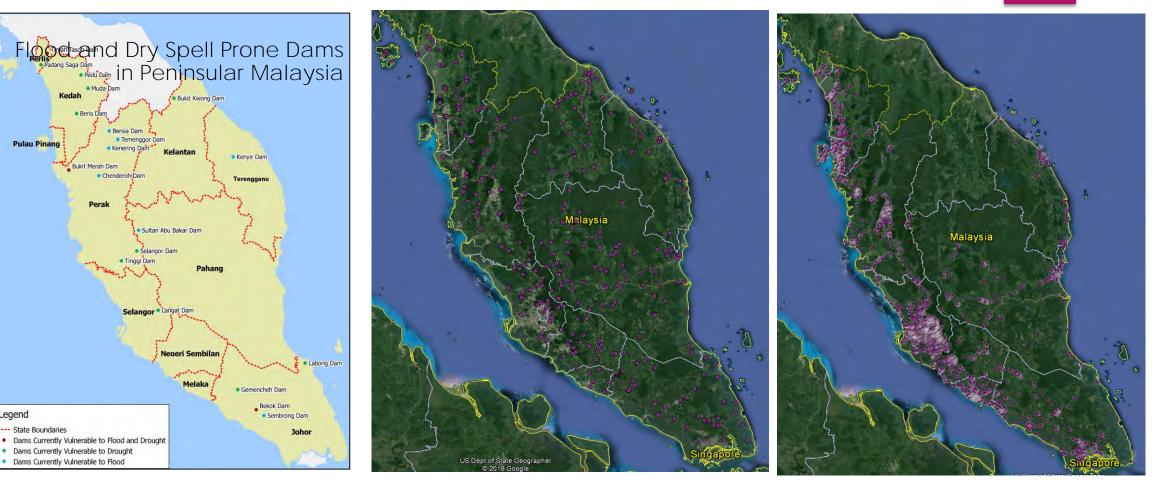

 Table 5.1: Annual Average Damage (AAD) Summary of Five River

 Basins

Basin Name	AAD (2030)	AAD (2050)
Muar	MYR 18.2 Million	MYR 131 Million
Kesang	MYR 4.6 Million	MYR 20 Million
Kerian	MYR 87 Million	MYR 481 Million
Setiu	MYR 6.9 Million	MYR 29.6 Million
Pahang	MYR 137 Million	MYR 857 Million
Total:	MYR 253.7 Million	MYR 1.5 Billion

- Worst hit basin Pahang River Basin followed by Kerian River Basintt
- The flood claim values used by this study were only conservative estimates at current market values
- Intangible damages and severe total loss scenarios are not considered under this study

Projected Changes in Flood Areal Extent for the Selected 15 Flood Prone Basins in Peninsular Malaysia


43

Projected Flood prone areas for the 15 basins in current, 2030 and 2050

44

Flood Prone	Basin Area	Current Flood Prone Area	Projected Flood Prone Area (2030)		v	od Prone Area 050)
Basins	km ²	km ²	km ²	Changes (%)	km ²	Changes (%)
Kedah	2800	127.6	136.1	+6.6	142.5	+11.7
Kerian	1418	138.2	175.0	+26.6	187.3	+35.5
Kesang	696	89.1	107.8	+21.0	108.8	+22.2
Muar	6149	302.2	456.0	+50.9	500.6	+65.7
Pulai	280	16.9	15.5	-8.5	16.0	-5.1
Skudai	347	9.0	9.7	+7.3	11.0	+22.1
Tebrau	261	3.2	3.3	+4.0	3.6	+13.4
Pahang	28549	1403.8	1686.4	+20.1	1762.3	+25.5
Setiu	1035	123.4	130.0	+5.4	131.8	+6.8
Muda	4185	366.0	522.0	+42.6	545.0	+48.9
Selangor	2086	224.9	311.1	+38.3	314.0	+39.6
Batu Pahat	2233	209.8	620.6	+195.8	665.4	+217.2
Johor	2252	238.5	269.3	+12.9	271.1	+13.7
Dungun	1714	114.5	172.6	+50.8	200.9	+75.4
Kelantan	11901	551.0	1391.5	+152.5	1350.1	+145.0
TOTAL	65,906	3,918	6,007	+9.1	6,210	+9.4

PLANNING, MITIGATION ACTION AND ADAPTIVE CAPACITY NEED TO PUT IN PLACE.

RESERVOIR STORAGE AND DAM SECURITY

Kedah

Pulau Pina

Legend

--- State Boundaries

WATER SUPPLY – WATER TREATMENT PLANTS

WATER SANITARY -SEWERAGE TREATMENT PLANTS

45

46

ASSESSMENT OF VULNERABILITY AND ADAPTATION

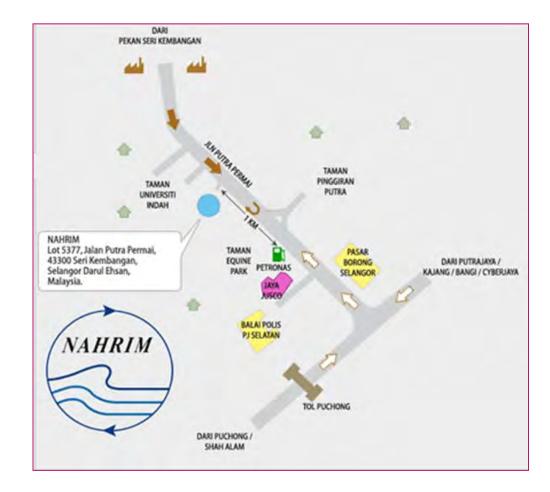
CHAPTER

OUTLINE

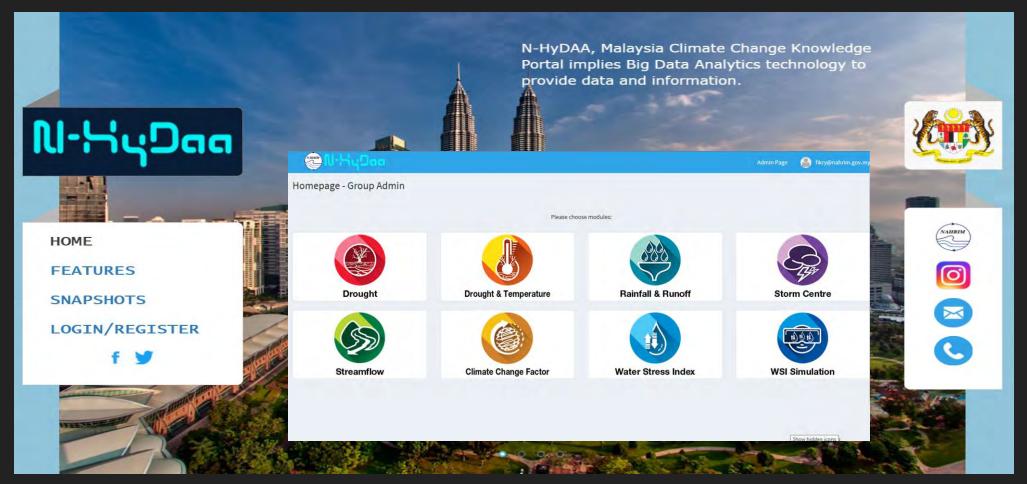
- INTRODUCTION
- FLOOD AND CLIMATE SCENARIO
- SETTING THE CONTEXT CLIMATE PROJECTION
- WATER PLANNING FLOOD RISK MANAGEMENT
- CONCLUSION KEY MESSAGE
- WEB PORTAL HYDRO-CLIMATE
 DATA ANALYSIS ACCELERATOR

KEY MESSAGE

Downscaled CC data provides significant opportunity to re-evaluate the Malaysia's water and other sectors under the hydro-climate conditions of the next 90 years of the 21st century

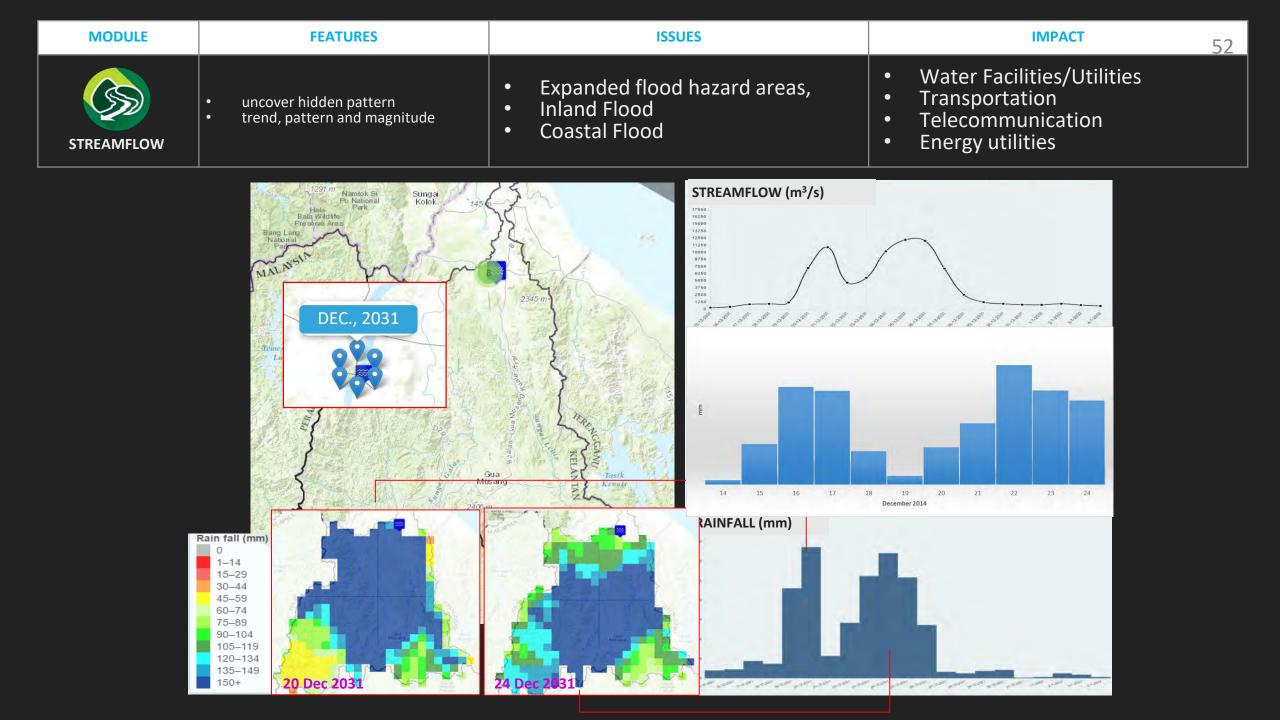

PLANNING FOR INFRASTRUCTURE SAFETY AND FLOOD RISK REDUCTION

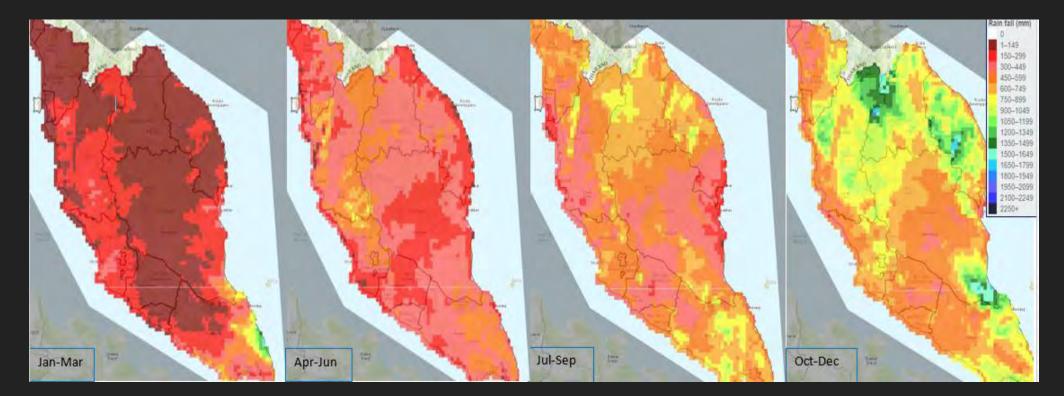
THANK YOU


49

Pusat Kajian Sumber Air dan Perubahan Iklim, Institut Penyelidikan Hidraulik Kebangsaan Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300 Seri Kembangan, Selangor Darul Ehsan.

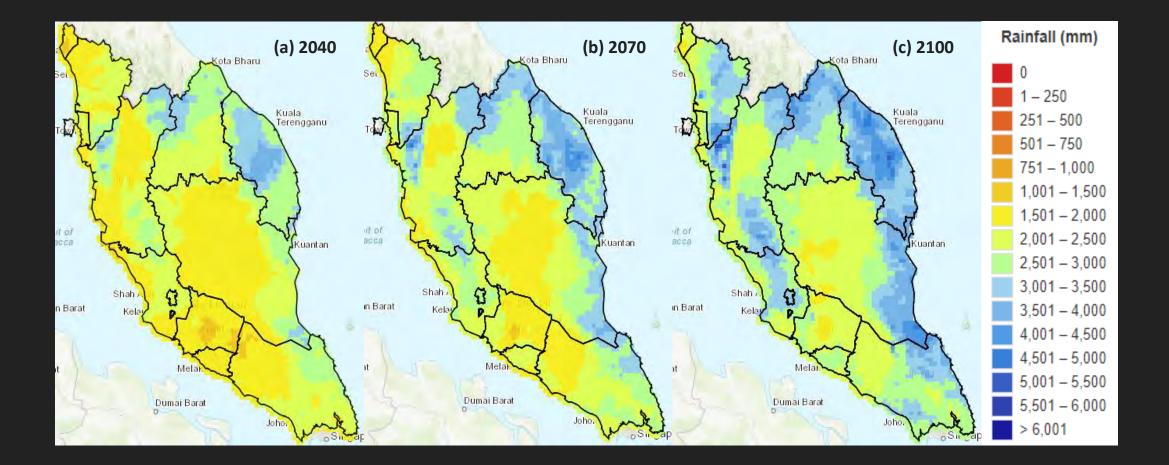
T : 603 8947 6400 F : 603 8948 3044 E :iphk@nahrim.gov.my


HYDRO-CLIMATE DATA ANALYSIS ACCELERATOR

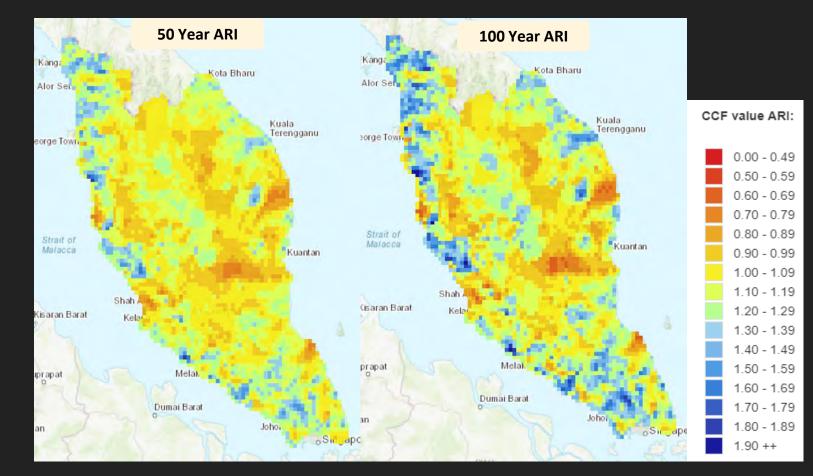

- Web-based application
- Consist of 8 Modules
- Big Data Analytics

- 1st Climate Change Knowledge Portal in Malaysia
- Analysis based on 10 Billions Hydro-climate Data
- Improved Decision Making

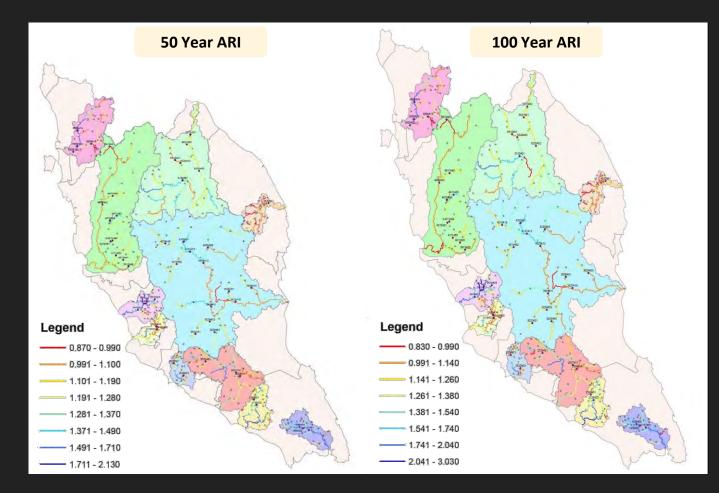
MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 51
STORMCENTRE	uncover hidden pattern of stormcentre	 Expanded flood hazard areas, Inland Flood Coastal Flood 	 Water Facilities/Utilities Transportation Telecommunication Energy utilities
	Year: 2028	by the second se	to the total second sec



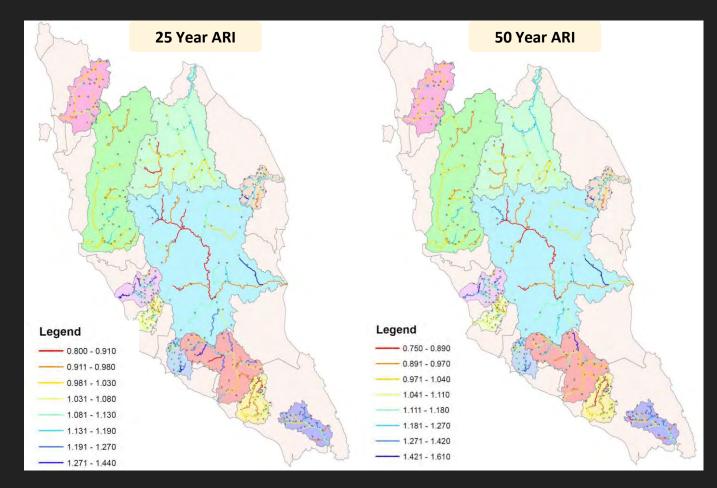
MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 53
DROUGHT	• Location, magnitude and pattern	• Prolonged dry periods	• Threats to future water resources and supply

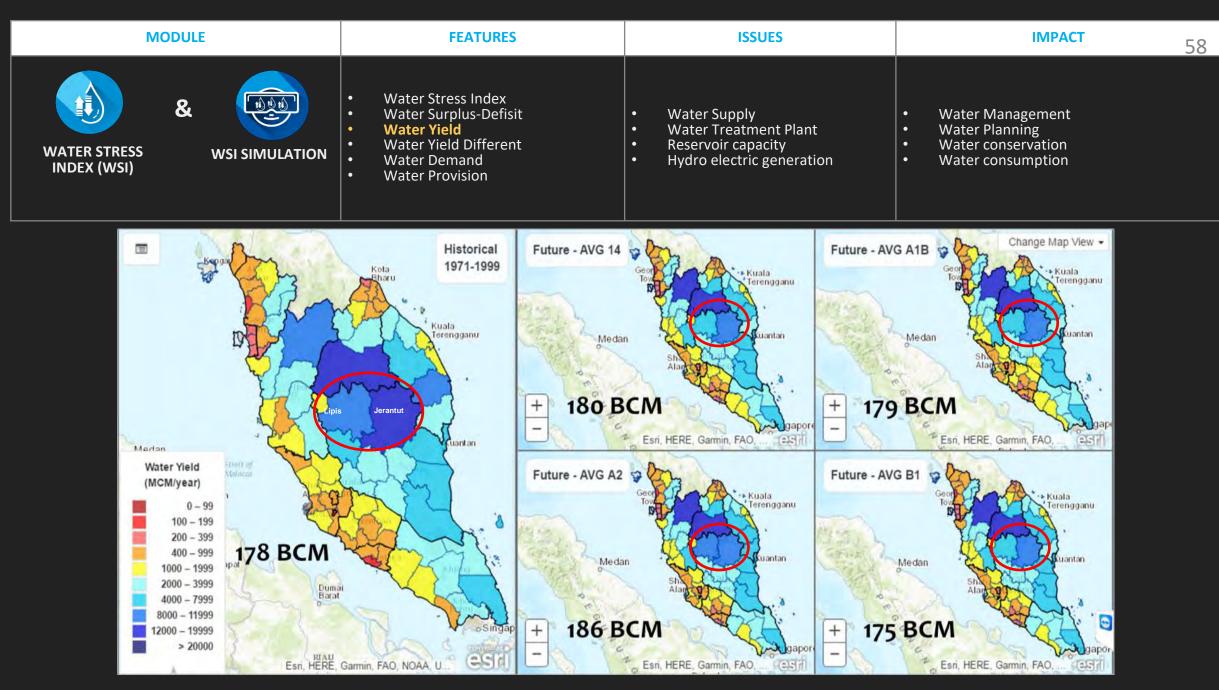

CHANGES IN PROJECTED THREE-MONTH RAINFALL (IN MM) IN TIME HORIZON 2020-2030 (WEEKLY | MONTHLY | 3-MONTHLY | 6-MONTLY)

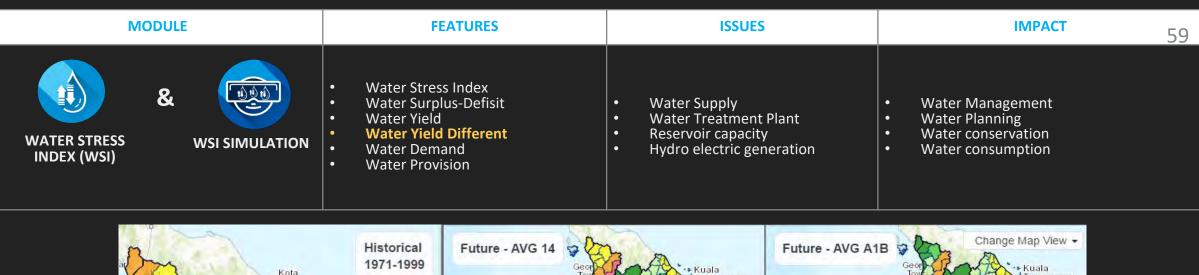
MODULE	FEATURES	ISSUES	IMPACTS ACTIONS	54
RAINFALL	 Trend, pattern and magnitude 	 Water supply Water resources River flow River pollution 	 Increase risk management cost, Loss of lives, infrastructures &, properties Environmental degradation 	

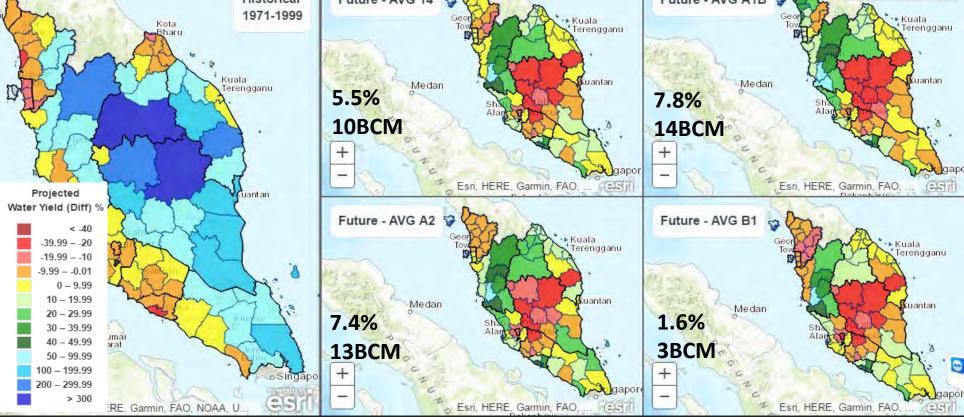

MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 55
CLIMATE CHANGE FACTOR	 Increase/decrease of rainfall intensity/magnitude Increase/decrease of flood magnitude & low flow magnitude 	 Integrity of water related infrastructure 	 Improve design guide, engineering practices and building codes

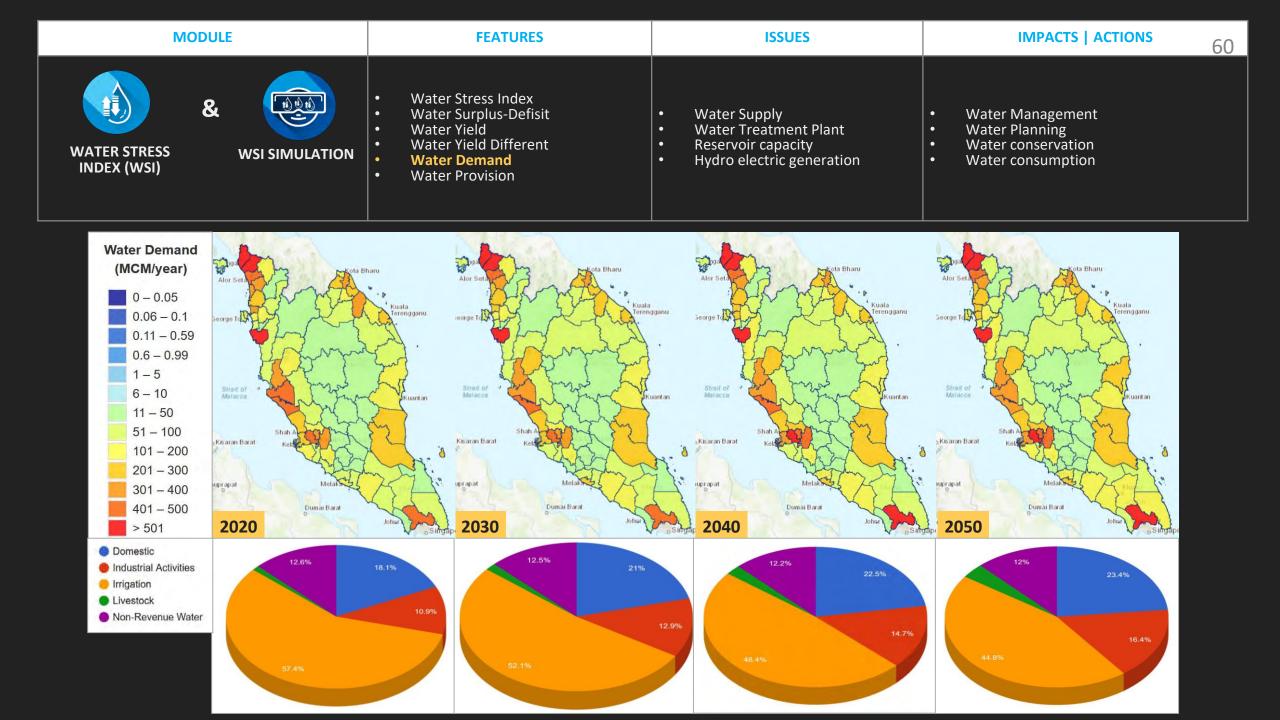
1. CCF DESIGN RAINSTORM


MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 56
CLIMATE CHANGE FACTOR	 Increase/decrease of rainfall intensity/magnitude Increase/decrease of flood magnitude & low flow magnitude 	 Integrity of water related infrastructure 	 Improve design guide, engineering practices and building codes


2. CCF DESIGN FLOOD


MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 57
CLIMATE	 Increase/decrease of rainfall	 Integrity of water related	 Improve design guide, engineering practices and building codes
CHANGE FACTOR	intensity/magnitude Flood magnitude & low flow magnitude	infrastructure	

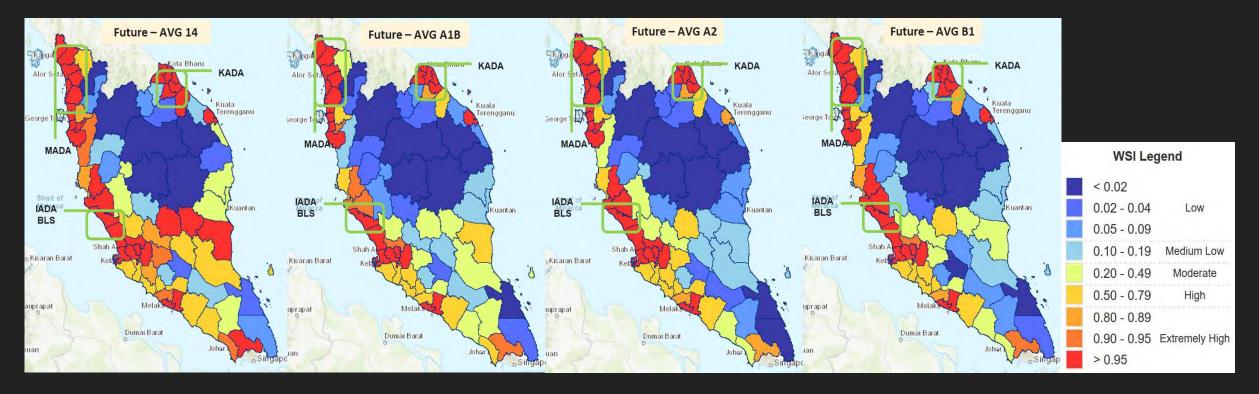

3. CCF DESIGN LOW FLOW



Projected Water Yield - 2030



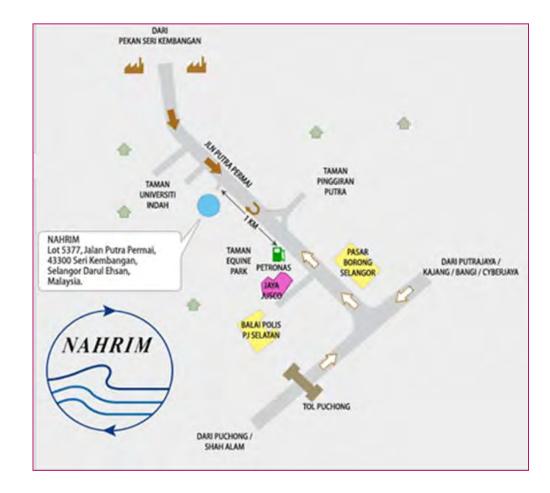
Projected Water Yield Different - 2030



MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 61
WATER STRESS INDEX (WSI)	 Water Stress Index Water Surplus-Defisit Water Yield Water Yield Different Water Demand Water Provision 	 Water Supply Water Treatment Plant Reservoir capacity Hydro electric generation 	 Water Management Water Planning Water conservation Water consumption

Projected Water Surplus-Deficit - 2030

MODULE	FEATURES	ISSUES	IMPACTS ACTIONS 62
WATER STRESS INDEX (WSI)	 Water Stress Index Water Surplus-Defisit Water Yield Water Yield Different Water Demand Water Provision 	 Water Supply Water Treatment Plant Reservoir capacity Hydro electric generation 	 Water Management Water Planning Water conservation Water consumption


Projected Water Stress Index - 2030

THANK YOU

63

Pusat Kajian Sumber Air dan Perubahan Iklim, Institut Penyelidikan Hidraulik Kebangsaan Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300 Seri Kembangan, Selangor Darul Ehsan.

T : 603 8947 6400 F : 603 8948 3044 E :iphk@nahrim.gov.my

