Urban Stormwater Management Manual *for* Malaysia

(Manual Saliran Mesra Alam)

By : Ir. AZMI BIN AMAT

Stormwater Management Division Drainage and Irrigation Department of Malaysia

OUTLINE

INTRODUCTION

INTRODUCTION

- Malaysian economy has gone through rapid structural change since 1957.
- Urban growth is dynamic in accordance with the rapid economic growth and industrialization.
- This will **change the hydrologic cycle** and influence on the runoff pattern.
- In 1971, Malaysia suffered serious damage over the whole country due to the flood.
- Government gave the Department of Irrigation and drainage (DID) the task of planning Implementation of Urban Drainage work as part of overall flood mitigation programs.

ISSUES - FLOOD

Flood

Major problem in Malaysia

Landuse For Urbanization

- Forest to agriculture
- Agriculture to urban areas

Increase Flood prone areas

• 29,800 sq.km (about the size of Selangor + Perak)

TYPES OF FLOOD

Major Flooding

the main river overtop and cause widespread flooding of long duration

Flash Flood

a short duration flood that is very localized

- Flood condition varies from state to state.
- Flood level varies from 0.2m up to 5m(extreme cases).
- Size of flood <100 ha. to a few thousand ha.

FLASH FLOOD DEFINITION

- Usually occur in urban areas
- Caused by short, intense, localized thunderstorms that occurs < 3 hours
- Flood water rise almost immediately during the storm and water will recede within 6 hours after the rain

CAUSES OF FLOODING

- Short, intense localised thunderstorms, the type of storm usually experienced in the evening
- Rapid and Uncontrolled Development in catchment areas resulting in Heavy Siltation
- **Obstructions in River Flow** System that Reduce in River Flow Capacity
- Limited available space for River Improvement works to handle the ever increasing flood flow due to escalating urbanisation process
- Insufficient internal drainage systems within the town area \rightarrow undercapacity

PAST DRAINAGE PRACTICE

PAST DRAINAGE PRACTICE

Planning and Design Procedures No. 1:

Urban Drainage Design Standards and Procedures for Peninsular Malaysia

gian Rorit dan Tallair atarian Portanian dan Conveyance oriented

1975

- Rapid disposal
- Localised in nature
- Single function (quantity control)
- Hard engineering

CONVEYANCE ORIENTED – HARD STRUCTURE

CONVEYANCE ORIENTED – WIDENING RIVER

Widening of The River Channel

CONVEYANCE ORIENTED – LAND PROBLEM

Widening and deepening at the town city center is not applicable due to land accusation too high.

CONVEYANCE ORIENTED – HIGH COST

Allocation for Flood Mitigation Programmed

WHY WE NEEDS STORMWATER MANAGEMENT

WHY WE NEEDS STORMWATER MANAGEMENT

- a) **Urbanisation** Land use Change
 - b) Flash Flood locations the whole nations Increasing
 - c) Government allocation to mitigate flood increase
 - d) Water Pollution
 - e) Water Scarcity

URBANIZATION – LANDUSE CHANGE

Jalan Bukit Bintang, 2017

Ampang Park, 2017

CHANGES IN HYDROLOGY AND RUNOFF DUE TO DEVELOPMENT

IMPACT OF UNCONTROLLED DEVELOPMENT

Time

URBAN STORMWATER MANAGEMENT MANUAL for MALAYSIA

DID MANUAL

Urban Stormwater Design References for Malaysia :

URBAN STORMWATER MANAGEMENT MANUAL FOR MALAYSIA

(MANUAL SALIRAN MESRA ALAM MALAYSIA)

VOLUME 4 DESIGN FUNDAMENTALS

DEPARTMENT OF IRRIGATION AND DRAINAGE MALAYSIA 25 years later ...

Control at source

2000

- Flow control (water storage)
- Quality control

.

Sediment control

Government of Malaysia Department of Irrigation and Drainage

Urban Stormwater Management Manual *for* Malaysia

MSMA 2nd Edition

The following 11 years

2011 MSMA 2nd Edition

Control at source

- Improvement in the aspect of WQ
- More practical

Download URL : http://water.gov.my

OBJECTIVE STORM WATER MANAGEMENT IN MALAYSIA

- Ensure the safety of the public
- •Control nuisance flooding and provide the safe passage of less frequent and larger flood events
- Stabilize the land form and control erosion
- •Optimize the land available for urban development
- *Minimize the environmental impact of urban runoff on water quality*
- Enhance the Urban Landscape

MSMA COMPONENT

3 PHASES

Stormwater Quantity Control

Erosion and Sediment Control

Stormwater Quality Control

Flash Flood

Mud Flood

Polluted Rivers

- conveyance systems must be sized for the total increase in flows resulting from urbanisation
- downstream conveyance systems often have insufficient capacity
- traditional hard lined open conveyance systems can be a hazard to the public during and after rain due to high flow velocities
- urban pollutants are transported to downstream areas

- In addition to the traditional conveyance-oriented approach, a potentially effective and preferable approach to stormwater management is the storage-oriented approach
- The principal elements and techniques used in a storageoriented system are stormwater detention facilities and retention facilities.

QUANTITY CONTROL – New Concepts

QUANTITY CONTROL – Control At Source

Conveyance

Apply for area < 5 *ha* (individual OSD 0.1 ha)

Recommended : Dry Pond 5-0 ha Recommended : Wet Pond > 10 ha

Dry Pond

Detention Pond

1000

CALL F

and the set

Conveyance Facilities : Pavement Drainage

PERSPECTIVE

SECTION

a) Grate

b) Curb Opening

c) Combination

Conveyance Facilities : Drains and Swales

Conveyance Facilities: Engineered Waterways

Conveyance Facilities: Engineered Waterways

Engineered Channel

Grassed Channel

Conveyance Facilities : Bioengineered Channel

(a) W ith Stabilisation Measures

(b) With Increased Capacity

TRM Technique

Gabion Mattress Reinforced Grass

Sand Filled Mattress Reinforced Grass

QUALITY CONTROL For Water Pollution

What it is **ESCP**?

An **ESCP** is a plan that details **temporary measures** that will be implemented during

the construction phase

Submission ESCP

- The Erosion Sedimentation Control Plan (ESCP) shall be submitted for **project area more than 1 ha**.
- The plans must be prepared based on construction activities staging which covers land grading & earthworks (pre-bulk grading plan) and construction stage (post-bulk grading plan).
- For project area **less than 1 ha**, the developer shall submitted Best Management Practices Plan to control soil erosion and siltation onsite.
- The plan must prepared by PE and CPESC holder
- And the consultant responsible to make sure all the BMPs constructed and well maintained.

ESCP

- Temporary BMPs Facilities
- To minimize erosion and sail delivery away from construction site.
- No land clearing shall be allowed for the construction site before the installation of sediment control facilities onsite

DID, 2010 GUIDELIONES FOR EROSION AND SEDIMENT CONTROL IN MLAYSIA

QUALITY CONTROL : Temporary BMPs

Sediment Control

Silt Fence

Silt Pond

Check Dam

QUALITY CONTROL : Permanent BMPs

GROSS POLLUTANT TRAPS (GPT)

Туре	Group	Description and Function	Catchment Area Range	Purpose-built or Proprietary
GPT Type 1	Floating Debris Traps (booms)	Litter capture on permanent waterbodies	> 200 ha	Proprietary and purpose built (on-line installation)
	Trash Racks & Litter Control Devices	Hard or soft litter capture devices on drains	2 – 400 ha	usually purpose built from modular components (on- line installation)
GPT Type 2	Sediment Basin and Trash Rack Traps (SBTR)	Sediment and litter capture for drains or pipes	5 – 2000 ha	Proprietary and purpose built (on-line or off-line installation)
GPT Type 3	Litter Control, Sediment Basin, Oil and Grease Trap	Litter, sediment and oil and grease, capture for drains or pipes	2 – 40 ha	Proprietary (on-line installation)

3

QUALITY CONTROL : Permanent BMPs

Infiltration Trench

QUALITY CONTROL : Permanent BMPs

Kawalan Kualiti: WATER QUALITY PONDS AND WETLANDS

(a) Plan

(b) Profile

Water Quality Pond / Constructed Wetlands

CONSTRUCTED - WETLAND

Putrajaya Dam

99

THE

1111

a second second

The outflow of Putrajaya Lake into Sungai Langat

Conclusion

- Stormwater Management Manual for Malaysia (MSMA) is a solution to flood, water resources and river pollution to Malaysia as a long term measure
- Reduced government expenditure on flood mitigation project
- As a basic of the development of "town in the garden concept" to become livable cities.

http://www.water.gov.my

THANKS YOU teríma kasíh

Rainwater detention & Vertical Green at Display Center

 SP Setia is one of the few developers conversant with Green Roof and Vertical Green Technology (Greenery on the walls of buildings).

CONTOH PERLAKSANAAN MSMA

•Pond and infiltration Trench

· CONTOH PERLAKSANAAN MSMA

•Structural Measure

Engineered Waterway

CONTOH PERLAKSANAAN MSMA

•Kolam Takungan

 Pemilihan kolam sebagai kawalan kuantiti dan pada masa yang sama boleh dijadikan alternatif kepada sumber air