Institute for Global Environmental Strategies

Waste Management and Resource Efficiency (WMR)

Climate benefits of improved organic waste management through the **3Rs approach in developing Asian countries**

Researcher Waste Management and Resource Efficiency (WMR) Institute for Global Environmental Strategies (IGES)

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

Research background

Problems of the waste sector:

- Increasing waste generation
- Increasing social resistance to new landfill and incineration projects.

Problems of the climate sector:

- Increasing anthropogenic GHG emissions
- Rising climate change impact

Matching solutions

- Reducing waste generation
- Decreasing waste to disposal site
- Reducing anthropogenic GHG emissions

Key research questions

- 1) How much the 3Rs can reduce GHG emissions from the waste sector?
- 2) Do developing Asian countries include the 3Rs in their national climate action plans/strategies?
- 3) How to enhance the 3Rs implementation successfully in developing Asian countries?

Janya Sang-Arun | IGES | http://www.iges.or.jp | Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo

IGES Interference of the second secon

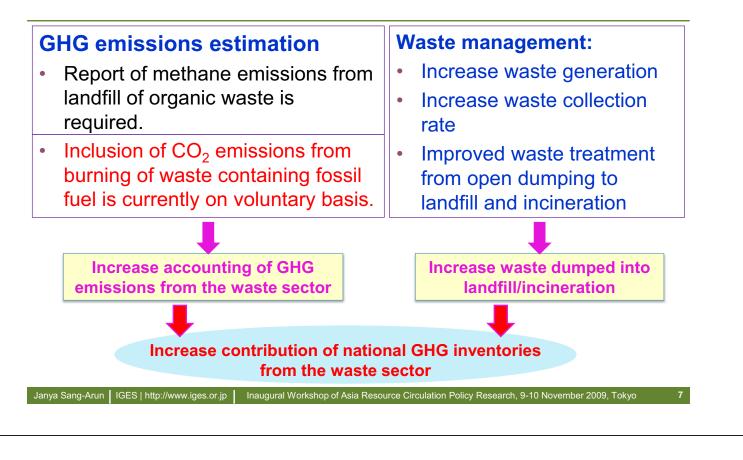
Research activities

- 1. Reviewing national greenhouse gas (GHG) inventories and national climate action plans/strategies of 10 studied countries.
- 2. Estimating potential GHG emissions from organic waste in the studied countries.
- 3. Identifying climate benefits of the 3Rs for organic waste.
- 4. Reviewing the **3Rs practices** for organic waste management.
- 5. Identifying appropriate organic waste management hierarchies regarding climate change impact and resource efficiency.
- 6. Developing a decision diagram for associating local governments in selection of organic waste management option.

Overview: GHG emissions and the waste sector

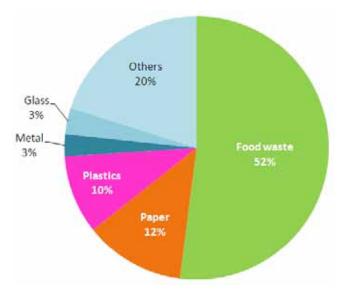
Janya Sang-Arun | IGES | http://www.iges.or.jp | Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste


National GHG Inventories in 1994

Country	National GHG inventories in 1994	GHG emissions from the waste sector in 1994 (MtCO ₂ eq.)		Sources
	(MtCO ₂ eq.)*	MSW	% MSW to total emissions	
China	4,081	42.6	1.04	Chinese Government, 2004
India	1,252	12.2	0.97	MoEF, 2004
Indonesia	883	8.44	0.96	MENLH, 1999
Thailand	325	0.411	0.13	MSTE, 2000
Viet Nam	154	1.39	0.90	MNRE, 2003
Malaysia	144	21.9	15.2	MOSTE, 2000
Philippines	169	4.25	2.51	IACCC, 1999
Bangladesh	76.3	1.31	1.72	MoEF, 2002
Cambodia	59.7	0.124	0.21	MOE, 2002
Laos**	24.2	0.240	0.99	STEA, 2000
Regional	7,168	92.9	£ 1.3 Z	

* Sinks are not included. **GHG inventory in 1990.


Current trend of GHG emissions from the waste sector

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

IGES Intelligite for Global Environmental Strategies

Main source of GHG emissions from the waste sector

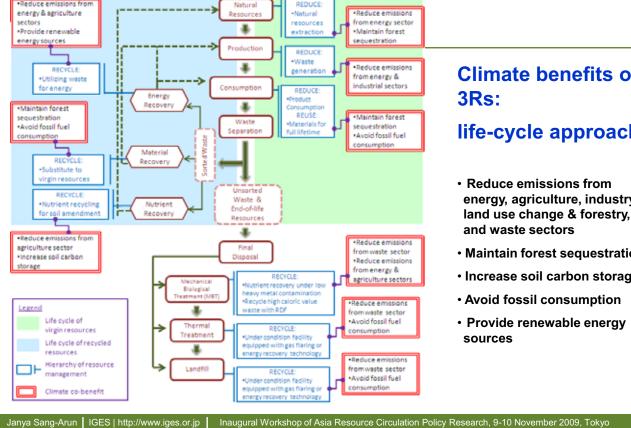
Waste compositions (regional average)

- Degradation of organic waste (152 mil. ton/yr) under anaerobic condition is the largest source of methane emissions.
- Burning of plastic waste (23 mil. ton/yr) is a major source of carbon dioxide emissions.

IGE

3Rs in the national climate action plans/strategies

Countries	Mention of solid waste	Mention of 3Rs approach	Sources
China	Yes	Reduce, Recovery, Utilization	NCCCC, 2007
India	Yes	Reduction, Recycling	PMCCC, 2008
Indonesia	Yes	5Rs for industry & 3Rs for MSW	MENLH, 2007
Thailand	Yes	3Rs	ONEP, 2008
Bangladesh	Yes	No	MoEF, 2008
Philippines	Limited	No	IACCC, 1999
Viet Nam	No	No	MNRE, 1999
Malaysia	No	No	MOSTE, 2000
Cambodia	No	No	MOE, 2002
Laos**	No	No	STEA, 2000


Janya Sang-Arun | IGES | http://www.iges.or.jp | Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

Climate benefits of the 3Rs

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

Climate benefits of 3**Rs**:

life-cycle approach

- Reduce emissions from energy, agriculture, industry, land use change & forestry, and waste sectors
- Maintain forest sequestration
- Increase soil carbon storage
- Avoid fossil consumption
- Provide renewable energy sources

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

12

Potential GHG emissions reduction through the 3Rs

Direct emissions reduction from organic waste

· 20-98% reduction by composting and 60-100% by anaerobic digestion of food waste (compared to landfill).

Organic waste	Potential net GHG emissions reduction compared to landfill (KgCO ₂ eq / kg of organic waste)		
Ŭ	Waste reduction	Composting	Anaerobic digestion
Food waste	0.42 - 1.05	0.07 - 1.03	0.25 - 1.05
Paper	1.12 - 2.80	0.20 - 2.74	0.70 - 2.80
Grass	0.48 - 1.19	-0.44 - 1.13	0.06 - 1.19

Indirect GHG emissions reduction

- 94% by recycling of plastic.
- 80% by recycling of steel.
- 56-64% by using 50% recycled aluminum.
- 22% by increasing use of recycled glass from 25% to 59%.

GĿ

14

Potential GHG emissions reduction through the 3Rs

Country	Total MSW (Mt/yr)	Potential GHG emissions reduction from 30% reduction of organic waste dumped into landfills (MtCO ₂ eq/yr)		
		Food	Paper	Sum
China	120	17.6 - 44.1	14.1 - 35.3	31.7 - 79.4
India	42	4.9 - 12.3	1.6 - 4.1	6.5 - 16.4
Indonesia	22.5	4.9 - 12.2	1.8 - 4.4	6.7 - 16.6
Thailand	14.7	2.8 - 6.9	0.9 - 2.3	3.7 - 9.2
Viet Nam	12.8	2.3 - 5.6	1.5 - 3.6	3.8 - 9.2
Philippines	11	1.5 - 3.6	1.4 - 3.5	2.9 - 7.1
Malaysia	8.7	1.3 - 3.2	1.2 - 2.9	2.5 - 6.1
Bangladesh	4.9	1.0 - 2.4	0.4 - 1.0	1.4 - 3.4
Regional	236.6	36.3-90.3	22.9-57.1	59.2-147.4

Janya Sang-Arun | IGES | http://www.iges.or.jp | Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo 13

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

Recommendations:

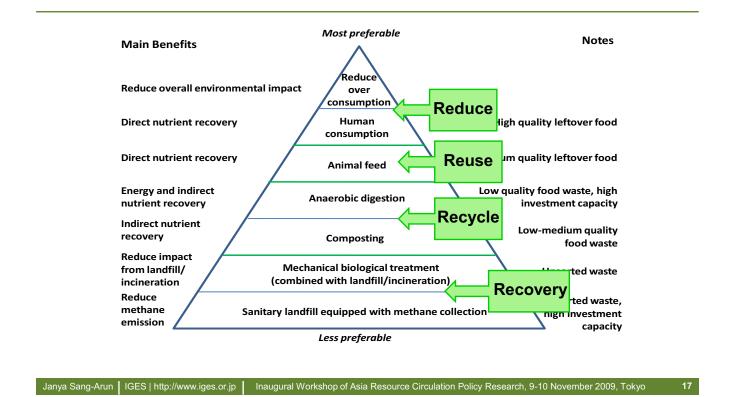
I. Waste separation at source II. Selection of waste management option

I. Waste separation at source

- Waste separation at sources is a key of success.
- Development of guideline for waste separation at source: category, bin, collection schedule, etc.
- Food waste separation at source should be prioritized.
- Paper, wood, and grass wastes separation should be promoted.

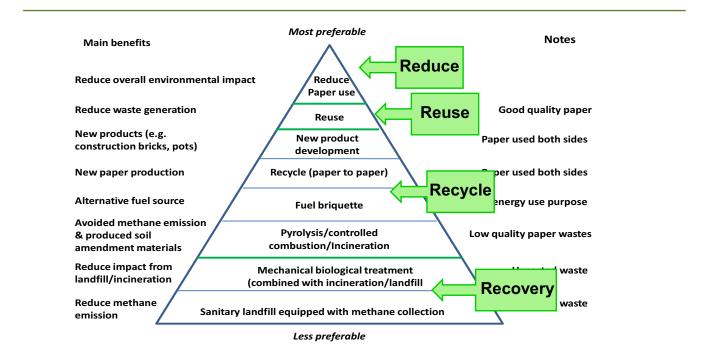
Janya Sang-Arun | IGES | http://www.iges.or.jp | Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

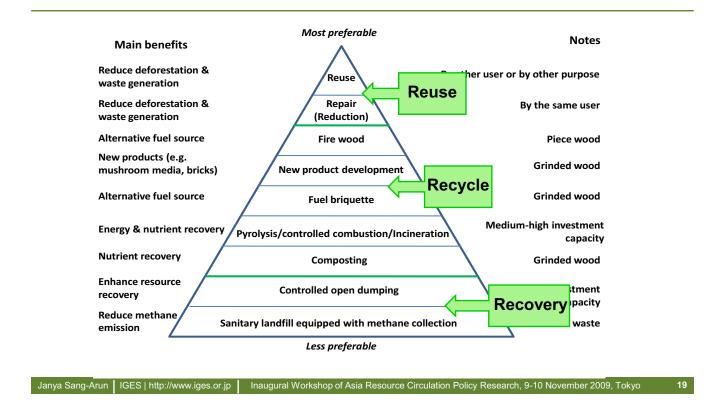


II. Selection of organic waste management option

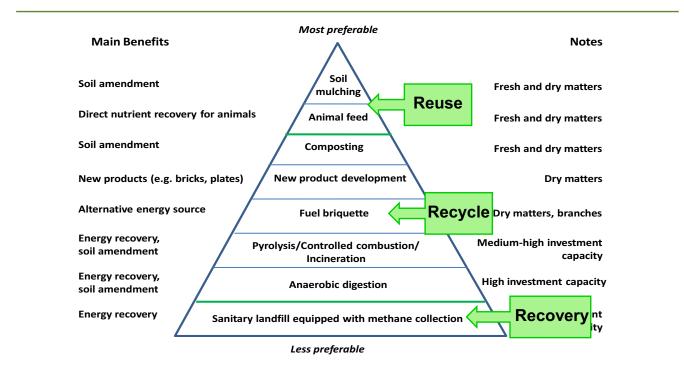
Municipality need	Social need	Preferable technology
 Reduce waste flows to 	 Food security 	Efficient resource
final disposal site	 Energy security 	recovery
 Improve collection and 	 Poverty reduction/ 	 Low GHG emissions
treatment of waste	job creation	 Low energy input
 Reduce cost for waste 	 Income distribution 	 Low monetary
collection and disposal		investment
 Reduce environmental 		 Low environmental
impact from waste		impact
treatment		
 Implement simple and 		
easy to handle		
management system		


Food waste management hierarchy

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste



Paper waste management hierarchy



Wood waste management hierarchy

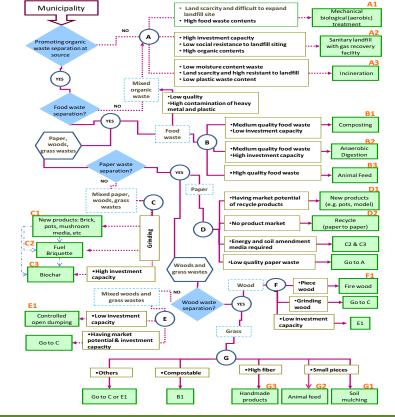
Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

Grass and garden waste management hierarchy

A decision diagram for selection of organic waste management option

Divided into 8 lines:

A: Unsorted waste and mixed organic waste → no/less organic waste separation


Janya Sang-Arun IGES | http://www.iges.or.jp Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo

- B: Food waste
- C: Mixed non-food waste
- D: Paper
- E: Mixed wood and grass wastes
- F: Wood waste
- G: Grass waste

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

21

Decision diagram for selection of appropriate organic waste management option

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

Conclusion

- The 3Rs are a national concern and should be promoted widely in order to reduce resource consumption, decrease GHG emissions, reduce the need for landfill, and avoid land-use conflicts.
- More research on the various benefits of the 3Rs in the studied region → Lifecycle assessment of GHG emissions and environmental impact, and cost-benefits analysis.
- Improved interaction between researchers and policy-makers are needed to enhance implementation.
- Pilot project demonstrating the 3Rs and waste separation at source should be granted.
- Strengthened international research cooperation and improved information sharing among countries in Asia are likely to be conducive towards that end.

Janya Sang-Arun | IGES | http://www.iges.or.jp | Inaugural Workshop of Asia Resource Circulation Policy Research, 9-10 November 2009, Tokyo

Institute for Global Environmental Strategies Climate benefits of 3Rs: organic waste

23

Further activity

- Revising the report
 - Please send any comment to <u>sang-arun@iges.or.jp</u> by 10 December 2009.
- Publishing a policy report by mid 2010.