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Abstract: Assessment of the progress of the Aichi Biodiversity Targets set by the Convention on 
Biological Diversity (CBD) and the safeguarding of ecosystems from the perverse negative impacts 
caused by Reducing Emissions from Deforestation and Forest Degradation Plus (REDD+) requires 
the development of spatiotemporally robust and sensitive indicators of biodiversity and 
ecosystem health. Recently, it has been proposed that tree-community composition based on 
count-plot surveys could serve as a robust, sensitive, and cost-effective indicator for forest 
intactness in Bornean logged-over rain forests. In this study, we developed an algorithm to map 
tree-community composition across the entire landscape based on Landsat imagery. We targeted 
six forest management units (FMUs), each of which ranged from 50,000 to 100,000 ha in area, 
covering a broad geographic range spanning the most area of Borneo. Approximately fifty 20 
m-radius circular plots were established in each FMU, and the differences in tree-community 
composition at a genus level among plots were examined for trees with diameter at breast height 
≥10 cm using an ordination with non-metric multidimensional scaling (nMDS). Subsequently, we 
developed a linear regression model based on Landsat metrics (e.g., reflectance value, vegetation 
indices and textures) to explain the nMDS axis-1 scores of the plots, and extrapolated the model to 
the landscape to establish a tree-community composition map in each FMU. The adjusted R2 
values based on a cross-validation approach between the predicted and observed nMDS axis-1 
scores indicated a close correlation, ranging from 0.54 to 0.69. Histograms of the frequency 
distributions of extrapolated nMDS axis-1 scores were derived from each map and used to 
quantitatively diagnose the forest intactness of the FMUs. Our study indicated that 
tree-community composition, which was reported as a robust indicator of forest intactness, could 
be mapped at a landscape level to quantitatively assess the spatial patterns of intactness in 
Bornean rain forests. Our approach can be used for large-scale assessments of tree diversity and 
forest intactness to monitor both the progress of Aichi Biodiversity Targets and the effectiveness of 
REDD+ biodiversity safeguards in production forests in the tropics. 
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1. Introduction 

Continued deforestation and forest degradation and the associated losses of biodiversity in 
tropical countries represent major global concerns [1]. To date, coordinated international efforts 
have resulted in two international conventions that attempt to reduce the rate of tropical 
deforestation and forest degradation and the associated biodiversity losses: the Convention on 
Biological Diversity (CBD), and the United Nations Framework Convention on Climate Change 
(UNFCCC).  

The CBD sets a strategic plan for biodiversity for 2011–2020 and the Aichi Biodiversity Targets, 
which include several targets for forest conservation and their sustainable use [2]. It is important to 
quantitatively assess the progress of the Aichi Biodiversity Targets, and there has been intensive 
discussion on which indicators should be used for monitoring them [3,4]. The development of 
essential biodiversity variables as a measurement for studying, reporting, and managing changes in 
biodiversity is a prerequisite for achieving the targets [4].  

The UNFCCC is a convention primarily targeting the mitigation of and adaptation to climate 
change. Reducing Emissions from Deforestation and Forest Degradation Plus (REDD+), a 
post-Kyoto Protocol mechanism developed under UNFCCC, is expected to have positive effects on 
biodiversity conservation because its main targets are natural tropical forests. When considering the 
impact of REDD+, it is important to consider REDD+ activities with biodiversity trade-offs. For 
example, if low-carbon, high-biodiversity tropical forests are converted into high-carbon, 
low-biodiversity forests (e.g., plantations and forests dominated by pioneer species), REDD+ may 
have an overall negative effect on biodiversity conservation [5,6]. Measures to safeguard 
biodiversity have been extensively discussed in this context under UNFCCC [7–9]. The premise of 
these safeguards is a compliance system where each REDD+ project is required to comply with 
standards and indicators to qualify for REDD+ credits. Such a compliance system must involve 
third party auditing and verification based on standards and indicators. Therefore, there is an 
urgent need to develop robust indicators to both accurately assess the progress of the Aichi 
Biodiversity Targets and avoid overall negative effects on biodiversity caused by the 
implementation of REDD+. A key obstacle to achieving these goals is the lack of global, integrated 
observation systems for delivering regular, timely data on changes in biodiversity [4]. 

Indicators for compliance systems can be generic or specific. Generic indicators [10] are a set of 
indicators applicable to all forest types and regions; they may be largely based on readily available 
statistical data or actual prescribed management plans such as the presence/area of forests with 
high conservation value, presence/type of conservation measures, and presence/magnitude of 
mitigation measures. Specific indicators are a set of indicators that involve direct measurements in 
the field such as changes in the distribution/number of endangered species, changes in the area of 
intact ecosystems, and changes in species richness. For indicators to be reliable and practical, they 
must incur a low financial cost, be easily identified, be proxies for ecosystem integrity, and have 
cross-taxon congruency [11] as well as sufficient robustness and sensitivity [12]. Generic indicators 
are superior in cost effectiveness, while specific indicators are superior as proxies of ecosystem 
integrity and sensitivity.  

Recently, Imai et al. [12] proposed that the community composition of canopy trees could be 
used as a specific indicator for “ecosystem integrity or intactness” in spatiotemporally dynamic 
Bornean production forests where timber is produced by commercial logging. The authors used the 
axis-1 scores of the ordination of vegetation plots based on the relative species (or genus) 
abundances in logged-over forests to indicate forest intactness. Derived axis-1 scores showed 
significant linear correlations with magnitude of logging intensity (i.e., the inverse of remaining 
above-ground biomass). This significant linear correlation was a result of the interaction of linearly 
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increasing species number in the pioneer guild and linearly decreasing species number in the 
climax guild with increased logging intensity [12,13]. Therefore, the indicator based on community 
composition (i.e., axis-1 scores of the ordination) actually indicated the compositional distance from 
an intact forest where there were zero or minimal effects from logging. The count-plot 
measurements on the ground were fast and inexpensive, and implemented by local foresters [12]. 
Therefore, the methods of Imai et al. [12] satisfied the above-listed requirements for indicators.  

A previously unresolved issue related to specific indicators is spatial representativeness; 
specific indicators derived from plots on the ground need to be extrapolated to the landscape or 
even region level. To address the increasing need for a practical indicator that is 
spatially/temporally sensitive and robust, we developed a new algorithm using satellite remote 
sensing to map forest intactness in Bornean tropical rain forests based on the community 
composition indicator of Imai et al. [12]. We used generic abundances instead of specific 
abundances because both specific and generic abundances demonstrated the same response to 
logging intensity [12]. Specifically, we developed a new algorithm to map variation in 
tree-community composition using Landsat imagery as a proxy for forest intactness and assessed 
whether our method could reliably diagnose the magnitude of forest intactness among/within 
production forests under different management regimes. We developed a linear regression model 
based on Landsat metrics to explain the community composition indicator of Imai et al. [12] and 
extrapolated the model to the landscape to establish a tree-community composition map in each 
forest management unit (FMU). Such a method will provide a valuable contribution to assessments 
of the progress of meeting the Aichi Biodiversity Targets and effectiveness of REDD+ safeguards as 
well as improved management of forest management units (FMUs).  

2. Materials and Methods 

2.1. Study Site 

We studied the community composition of canopy trees and mapped the patterns of 
tree-community composition in six Bornean FMUs that were conducting legal selective logging for 
commercial purposes. An FMU is a management entity with a valid logging license from the local 
government either from Malaysian states in Malaysian Borneo or from the Indonesian Government 
in Indonesian Borneo. In each FMU, the marketable trees (large dipterocarp species) within a 
certain size class are harvested for timber. FMUs in Borneo typically range from 50,000 to 100,000 ha 
in size, and their land belongs to the respective governments. These areas are covered by lowland 
mixed dipterocarp forests, with varying degrees of degradation reflecting their different logging 
histories.  

The studied FMUs were Segaliud Lokan (5°20’–27’N, 117°23’–39’E, 576 km2), Deramakot 
(5°14’–28’N, 117°20’–38’E, 551 km2), Tangkulap (5°18’–31’N, 117°11’–22’E, 276 km2), and Sapulut 
(4°40’–55’N, 116°30’–117°00’E, 956 km2) in Sabah, Malaysia; and, Roda Mas (0°46’–1°05’N, 
114°25’–115°06’E, 703 km2) and Ratah (0°7’S–0°13’N, 114°58’–115°30’E, 982 km2) in East Kalimantan, 
Indonesia (Figure 1). The areas of Segaliud Lokan, Deramakot, and Tangkulap were initially logged 
in 1958, 1956, and 1970, respectively, using conventional logging methods (i.e., high-impact logging 
with no environmental considerations [14]). The three FMUs were adjacent to one another. In 
Deramakot, conventional logging continued until 1989, when all logging activities were halted for 
regrowth. Then, a long-term management plan with reduced-impact logging was introduced to 
Deramakot in 1995. Reduced-impact logging is an improved method of selective logging, including 
pre-harvest inventory, mapping of all canopy trees, directional felling, liana cutting, and planning 
of skid trails, log decks, and roads [15,16]. In combination with reduced-impact logging, a longer 
cutting cycle (i.e., 40 years) was strictly adhered to in accordance with the long-term management 
plan [17]. These combined approaches helped to preserve forest integrity [13,18–20]. Deramakot 
was the first tropical forest certified by the Forest Stewardship Council (FSC) in 1997, and was 
considered an exemplary model of sustainable forest management by the Sabah Government. 
Reflecting this logging history, we observed that the forests inside the Deramakot FMU were less 
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disturbed based on aboveground biomass and varied biological communities [13]. In contrast, 
Segaliud Lokan was repeatedly logged using conventional logging until 2002, after which 
reduced-impact logging has been implemented. Tangkulap was repeatedly logged using 
conventional logging until 2002, after which all logging activities have remained suspended. 
Sapulut was first logged in 1956 and repeatedly logged until 2000 using conventional logging, after 
which reduced-impact logging has been carried out, but industrial tree plantations have been 
established and Sapulut now consists of rubber and Acacia plantations over approximately 35% of 
its area. Reduced-impact logging was implemented in Roda Mas from at least 2008. It is highly 
likely that logging had been conducted earlier in the Roda Mas area, but there is no information 
about its logging history before 2008. We estimate that the logging intensity was relatively mild in 
the Roda Mas area because areas of intact forest still remain throughout the area. Ratah 
implemented conventional logging from 1972 to 2010, after which reduced-impact logging was 
implemented. Deramakot, Tangkulap, Roda Mas, and Ratah are all certified by the FSC. Sapulut 
and Segaliud Lokan are certified by Malaysian Timber Certification Council (MTCC). Table 1 
summarizes the target areas.  

 
Figure 1. Locations of the six forest management units (FMUs) in this study: (1) Segaliud Lokan, (2) 
Deramakot, (3) Tangkulap, (4) Sapulut, (5) Roda Mas, and (6) Ratah. 

Table 1. Profiles of the forest management units (FMUs) targeted in this study. 

Name of FMU 
State/Province, 
Nation 

Silviculture and Timber 
Harvest 

Forest  
Certification 

Established 
Plot Number 

Segaliud Lokan 

Sabah, Malaysia  

1958–2002 CL, Since 2003 RIL MTCC 
50 Deramakot 1956–1985 CL, Since 1995 RIL FSC 

Tangkulap 1970–2002 CL FSC 
Sapulut 1956–2000 CL, Since 2001 RIL MTCC 50 
Roda Mas East Kalimantan, 

Indonesia 

Since at least 2008 RIL FSC 50 

Ratah 1972–2010 CL, Since 2011 RIL FSC 90 
Note: CL, conventional logging; RIL, reduced impact logging; FSC, Forest Stewardship Council; 
MTCC, Malaysian Timber Certification Council. 
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2.2. Field Survey 

We conducted count-plot surveys in the four FMUs: Segaliud Lokan, Sapulut, and Ratah in 
2011–2012 [12] and Roda Mas and Ratah in 2014–2015. The number of the established plots in each 
FMU is shown in Table 1. Because Segaliud Lokan, Deramakot, and Tangkulap are adjacent to one 
another with the same forest type, we assumed that the count-plot data obtained from the field 
survey in Segaliud Lokan was representative of the canopy species composition of the forests in all 
three FMUs.  

Details of the procedure of the count-plot survey are described in Imai et al. [12]. Briefly, to 
select representative vegetation plots from a heterogeneous forest with varying magnitudes of 
forest degradation, we classified each FMU into five strata based on Landsat imagery according to 
the extent of forest degradation, from intact forest (stratum 1) to open canopy area with several 
pioneer trees (stratum 5) [12]. Here, we defined the magnitude of forest degradation based on the 
remaining aboveground biomass, a definition of the Intergovernmental Panel on Climate Change 
[21]. Ten 20 m radius circular plots (1257 m2 in area) were randomly established at altitudes below 
600 m a.s.l. in each stratum in each FMU (i.e., 50 plots in each FMU). To minimize spatial 
autocorrelation, plots were established at a distance of at least 100 m from one another. Global 
positioning system (GPS) data were collected during the field surveys at the center of a plot with 
calibration for at least one hour in each plot. We measured diameter at breast height (dbh) of all 
trees (dbh ≥10 cm) and counted all measured species in each plot. Woody vines were excluded from 
the inventory. Trees with buttresses were measured well above (ca. 50 cm) protrusions. All trees 
were identified by local botanical experts. If trees could not be identified in the field, voucher 
specimens were collected and identified in local herbaria. Samples that could not be identified to 
the species level were distinguished as morphospecies. We obtained inventory data from a total of 
240 plots. 

2.3. Field Data Analysis 

We recorded 14,783 stems from 85 families and 254 genera in 240 plots (totaling 30.2 ha in area). 
The Chao distances [22] and the number of trees of each genus were used to calculate the distance 
matrix for the inventoried plots in each FMU. Then, an ordination of plots was conducted to 
ordinate the inventoried plots (approximately 50 plots) for each FMU with non-metric 
multidimensional scaling (nMDS) using the metaMDS procedure in the vegan package in the R 
software program (R version 3.2.0) [23]. Subsequently, the nMDS axis-1 scores were used as an 
index of tree-community composition. Imai et al. [12] demonstrated that the nMDS axis-1 scores of 
plots correlated with the aboveground biomass values of the plots, a proxy for forest degradation, 
in each FMU (R2=0.52–0.71). Although plots were a considerable distance from one another, we 
were unable to completely rule out the possibility of spatial autocorrelations among plots. 
Therefore, we tested for autocorrelations among plots in each FMU but found none (see 
Supplementary Materials, Figures S1 and S2). Hence, the nMDS axis-1 scores of plots indicated 
intactness in terms of tree-community composition—in other words, the compositional distance 
from intact forests where there were no effects of logging. Intactness can also be functionally 
translated to ecosystem integrity because regeneration ability is assured in more intact forests.  

To compare the differences between FMUs with the same index, the nMDS axis-1 scores were 
normalized by transforming the scores into new scores with a mean of 0 and a standard deviation 
of 1. In order to assure that a given normalized score can indicate the same forest condition in terms 
of forest intactness across FMUs, we regressed normalized nMDS axis-1 scores with relative 
abundance of pioneer species (genera) per plot in each FMU. Subsequently, significant differences 
in the slope and intercept of the regression lines among FMUs were tested with a multi regression 
analysis. Complete overlap of the regression lines suggests that a given normalized score can 
indicate the same forest condition across FMUs. Indeed, there were no significant differences in the 
intercept and slope among the regression lines in Segaliud Lokan, Ratah and Sapulut 
(Supplementary Materials, Figure S3). The intercept and slope of Roda Mas were exceptionally 
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significantly different from the other FMUs, but the range of the deviation was still within that of 
the other FMUs. The normalized scores will be used as “nMDS axis-1” in the following analyses. 

2.4. Satellite Analysis 

2.4.1. Satellite Images and Image Pre-Processing 

The estimates of the nMDS axis-1 scores for the entire study area in each FMU were based on 
Landsat TM (Thematic Mapper) and OLI (Operational Land Imager) imageries. Descriptions of the 
data set (sensor, path/row and date) of the imageries used are given in the Supplementary Material 
(Table S1). No significant geolocation errors were observed in the images because the GPS ground 
positions collected on logging roads corresponded closely with the images. 

As pre-processing, the raw digital numbers of each image were converted into 
top-of-atmosphere radiance. Subsequently, to compensate for atmospheric scattering and 
absorption effects, an atmospheric correction algorithm based on the Second Simulation of a 
Satellite Signal in the Solar Spectrum radiative transfer code [24,25] was used to convert 
top-of-atmosphere radiance into surface reflectance. Finally, the effects of differential illumination 
due to topography were reduced using the method described by Ekstrand [26]. Shuttle Radar 
Topography Mission (SRTM) data were used to correct the illumination effects. Then, pixels 
covered with clouds/shadow were removed using an object-based approach. We created image 
segments composed of spectrally coherent pixels that were clustered based on homogeneity criteria, 
and established a threshold to detect cloud/shadow segments. Then, we removed them using the 
threshold and visual inspection.  

Subsequently, the missing data due to cloud cover in Sapulut, Roda Mas, and Ratah were filled 
in using the cloud-free areas of temporally adjoining data. Where satellite imagery is subjected to 
high incidence of clouds or haze, which is often the case in tropical rain forests, the mosaicking of 
cloud-free parts of temporally adjoining data may be the best option for deriving cloud-free 
coverage [27]. In our study, in the mosaicking procedure, calibrated cloud-free parts of adjoining 
secondary images were embedded in the missing parts of the base image. To calibrate secondary 
images to the base image, we used a linear regression model [28–34]. The basis for the model was 
the set of co-located, mutually clear pixels from each base- and secondary-scene pair. Before 
establishing regression models, we excluded pixels with marked spectral changes, which possibly 
occurred with land-cover changes, using a change-detection analysis with a normalized difference 
vegetation index (NDVI) [35]. Subsequently, pixel-level regression models were established using a 
robust regression. A regression model for Landsat-TM/OLI images has the following general form:  

ybase i = f (xsec 1, xsec 2, xsec 3, xsec 4, xsec 5, xsec 6, xsec 7), 
where ybase i is the reflectance value of the pixel in the base image for the ith band to be predicted, 
and xsec 1 is the reflectance value of band 1 of the co-located pixel in the secondary images, xsec 2 is the 
reflectance value of band 2, and so on. Missing data in each pixel in the base images were replaced 
by the calibrated pixels of secondary images using the regression models. Landsat-OLI 
(Jun/19/2013), Landsat-OLI (May/31/2015), and Landsat-TM (Feb/10/2010) were used as base images 
in Sapulut, Roda Mas, and Ratah, respectively. eCognition Developer 8.7 was used to create image 
segments, and ERDAS Imagine ver.11.0 and ArcGIS 9.3.1 were used for pre-processing. 

2.4.2. Extrapolation of nMDS Axis-1 Scores Based on Landsat Data 

To estimate the nMDS axis-1 scores of the entire study area of each FMU, we established 
multiple linear regression models between the nMDS axis-1 scores of the inventoried plots and 
corresponding metrics of the Landsat imagery (i.e., average value of Landsat metrics within the 20 
m-radius from the center of the plots) in each FMU. Then, the nMDS axis-1 scores were 
extrapolated to the entire area of each FMU based on the model. The inventory plots that were 
unavailable because of cloud cover and could not be replaced in the above cloud-correction 
procedure were eliminated in this procedure. We developed one independent model for each FMU 
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rather than developing a single model for all FMUs combined by combining all plots because it was 
necessary to take regional floristic variation into account. 

The normalized scores of nMDS axis-1 were considered response variables, and the Landsat 
metrics were considered independent variables. We used the following Landsat metrics: reflectance 
value of each band (Band1TM/OLI, Band2TM/OLI, Band3TM/OLI, Band4TM/OLI, Band5TM/OLI, Band6OLI, 
Band7TM/OLI), normalized difference vegetation index (NDVI) [35], normalized difference water 
index (NDWI) [36,37], normalized difference soil index (NDSI) [38], and enhanced vegetation index 
(EVI) [39]. The mean values of the Landsat metrics within a 20 m radius from the center of the plots 
were used as the metrics corresponding to each plot. The indices were calculated from the 
following equations: 

 NDVI = (Band4TM(5OLI) − Band3TM(4OLI)) / (Band4TM(5OLI) + Band3TM(4OLI)), 
NDWI = (Band3TM(4OLI) − Band5TM(6OLI)) / (Band3TM(4OLI) + Band5TM(6OLI)), 
NDSI = (Band5TM(6OLI) − Band4TM(5OLI)) / (Band5TM(6OLI) + Band4TM(5OLI)), 

EVI = 2.5*(Band4TM(5OLI) − Band3TM(4OLI)) / (Band4TM(5OLI) + 6*Band3TM(4OLI) − 7.5*Band1TM(2OLI) + 1). 
In addition to the above metrics, the coefficient of variation (CV), standard deviation (SD), and 

textures of the gray level co-occurrence matrix (GLCM) [40] were used as proxies for spectral 
heterogeneity because degradation of forest canopies might affect the heterogeneity of the spectral 
pattern. The CV, SD, and textures of the GLCM were calculated using a 3×3 pixel window based on 
the reflectance values and each of the indices. The GLCM is a tabulation of how often different 
combinations of gray levels occur at a specified distance and orientation in an image object [41]. The 
homogeneity, contrast, angular second moment, entropy, dissimilarity, correlation, mean, and 
standard deviation were calculated as the indices of the textures. A total of 120 and 132 metrics 
were generated based on Landsat TM and OLI, respectively. The independent variables of the 
regression models were chosen using a stepwise selection from all of the metrics to avoid 
multi-collinearity among the independent variables. The values of the variance inflation factor (VIF) 
of selected independent variables were all less than 10 except for Roda Mas, which indicated that 
there was no multicollinearity (see Supplementary Materials, Table S2). We removed the areas 
above 600 m elevation from the analysis, because the potential natural vegetation above 600 m 
differed from that of lowland natural forest [42,43]. eCognition developer 8.7 was used to calculate 
texture, R ver 3.20 was used to establish the models, and ERDAS Imagine ver.11.0 and ArcGIS 9.3.1 
were used in the other procedures. 

2.5. Validation of nMDS Axis-1 Model 

We used a cross-validation approach [20,44] to assess the accuracy of the models. Four-fifths of 
all plots were randomly selected in each FMU to construct the nMDS axis-1 models. Based on these 
models, we estimated the nMDS axis-1 scores of the remaining one-fifth of the plots. Then, we 
tested the correlation between the estimated nMDS axis-1 scores and the field-measured nMDS 
axis-1 scores. This step was reiterated 1,000 times in each FMU to derive the 95% confidence 
interval of the correlation coefficient. The statistical tests were conducted using R ver. 3.20.  

2.6. Comparison of Canopy Conditions Based on nMDS Axis-1 Scores among FMUs 

To assess whether our method could reliably diagnose the magnitude of forest intactness, we 
calculated the histogram of relative frequency and mean value of the nMDS axis-1 scores for each 
FMU and compared them based on their management types. To compare the histograms, we chose 
four representative FMUs: Roda Mas (FMU practicing reduced-impact logging in relatively intact 
forests); Deramakot (FMU practicing reduced-impact logging in previously conventionally logged 
forests); Segaliud Lokan (FMU with a longer history of conventional logging); and Sapulut (FMU 
including industrial tree plantations). The histograms were represented as probability density 
functions, which indicate relative frequency of nMDS axis-1 scores in each FMU.  

The histogram of the nMDS axis-1 scores of each FMU was used as an index of the spatial 
variability of the magnitude of forest intactness, and the mean value was used as the average 
condition in each FMU. To compare the histograms of the nMDS axis-1 scores among FMUs, a 
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regression model based on all plots (approximately 50) was extrapolated to the entire area of the FMU, 
from which the histogram was derived. To compare the differences in the mean nMDS axis-1 scores 
among the six FMUs, four-fifths of all plots were randomly selected to construct nMDS axis-1 models 
in each FMU. Based on these models, we estimated the mean nMDS axis-1 scores of the entire area of 
each FMU. This step was iteratively done 1000 times to derive the mean value and 95% confidence 
intervals of the mean nMDS axis-1 scores. Then, the relationships of the derived histograms and 
means of the nMDS axis-1 scores with the type of forest management were examined. 

3. Results 

3.1. Forest-Intactness Maps 

The nMDS axis-1 scores based on the stepwise selection were mainly explained by the 
short-wave infrared (SWIR) reflectance, textures, and SD (Table 2). The correlation coefficient scores 
between the predicted and observed nMDS axis-1 scores ranged from 0.604 to 0.745 (Figure 2). The 
derived forest-intactness maps of all FMUs are shown in Figure 3. Each pixel in the maps contains 
an nMDS axis-1 score, and the color gradation from blue to red indicates a gradient of nMDS axis-1 
scores from high to low values as a proxy for the canopy tree composition at a genus level. The 
maps showed conspicuous blue areas corresponding to the tree-community composition of an 
intact forest as well as conspicuous red areas corresponding to the tree-community composition of 
the least intact forest. Intact forests and least-intact forests were indicated as the two extremes of a 
continuum of forest degradation in our method.  

Table 2. Description of established multivariate regression models based on all plots. 

  R2 Coefficient SE T-value Pr (>|t|) 
SegaliudLokan-Deramakot-Tangkulap (N=47) 
B7TM 

0.642 

−0.38989 2.80E-04 3.69863 <0.001 
GLCM_mean_NDVI −0.25902 1.20E-02 2.23543 3.10E-02 
GLCM_correlation_B3TM −0.32586 3.80E-01 3.3816 1.60E-03 
GLCM_mean_B1TM 0.30875 9.40E-03 2.76426 8.50E-03 
GLCM_homogenity_B4TM 0.1891 3.70E+00 2.03608 4.80E-02 
Sapulut (N = 45) 
B6OLI 

0.604 

−0.46159 2.40E-05 3.7795 <0.001 
GLCM_contrast_B3OLI 0.37483 3.10E-05 3.8679 <0.001 
B5OLI −0.36385 1.20E-05 3.0253 4.30E-03 
GLCM_mean_B6OLI −0.286 8.20E-03 2.8178 7.50E-03 
Roda Mas (N = 45)      
B6OLI 

0.745 

−0.86698 7.50E-05 4.9699 <0.001 
SD_NDSI −0.75056 1.20E-04 4.5416 <0.001 
SD_NDWI −2.12925 2.20E-04 4.6781 <0.001 
SD_NDVI 2.00116 4.50E-04 3.373 1.70E-03 
B4OLI 0.56146 4.70E-04 2.3481 2.40E-02 
Ratah (N = 64)      
B7TM 

0.615 
−1.42357 1.30E-03 7.02905 <0.001 

B3TM 0.75859 2.80E-03 3.74366 <0.001 
GLCM_dissimilarity_B4TM 0.25656 9.80E-03 3.2506 1.90E-03 

Note: N, number of plots used for each model; R2, adjusted R-squared value; Coefficient, standardized partial regression 
coefficient; SE, standard error; SD, standard deviation; GLCM, grey level co-occurrence matrix; NDVI, normalized difference 
vegetation index; NDSI, normalized difference soil index; NDWI, normalized difference water index. 
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Figure 2. Model fits for all available inventory plots in each FMU. Scatter plots show relationships 
between predicted and observed scores. 

 

Figure 3. Tree-community composition maps of all FMUs. A color gradation from blue to red 
indicates a gradient of normalized nMDS axis-1 scores from high to low values as a proxy for 
canopy tree composition at a genus level. 

Several FMUs had areas of intact forests (e.g., along the left side in Ratah and upper-right side 
in Roda Mas). A few of the FMUs had conspicuous red-yellow areas, which corresponded to highly 
degraded areas. The most conspicuous red-yellow area was the eastern part of Ratah, which 
corresponded to the land after forest fire in 1998. The red-yellow area at western part of Roda Mas 
was allocated to local people who practice slash and burn agriculture. Mosaics of red areas occurred 
in Sapulut, which corresponded to industrial tree plantations. The forest intactness inside the 
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Deramakot was uniformly green, reflecting the history of reduced-impact logging and longer 
cutting cycle (i.e., 40 years). In contrast, Segaliud Lokan where reduced-impact logging had been 
implemented after 2002 and Tangkulap where all logging activities had remained suspended after 
2002 had sparse yellow-red areas inside. This indicated that the negative effect of high-impact 
conventional logging continued until 2002 still remained in these two FMUs. 

3.2. Validation of Community-Composition (nMDS Axis-1) Models 

The cross validation indicated that the accuracy of the model estimates varied among FMUs 
but was generally high. The means (95% confidence interval, CI) of the iteratively calculated 
correlation coefficients between the estimated nMDS axis-1 scores and actual observed scores 
(adjusted R2 values) were 0.57 (CI 0.10–0.87), 0.54 (CI 0.10–0.87), 0.69 (CI 0.37–0.91), and 0.56 (CI 
0.12–0.84) for Segaliud Lokan-Deramakot-Tangkulap, Sapulut, Roda Mas, and Ratah, respectively. 

3.3. Comparison of Histogram/Mean nMDS Axis-1 Scores among FMUs 

The histograms of the nMDS axis-1 scores in six FMUs are shown in Figure 4a. The histograms 
varied significantly among the FMUs in terms of mode and pattern; the ranges were the same 
because the nMDS axis-1 scores were standardized across the FMUs. The mode of Roda Mas had 
the highest axis-1 score among the FMUs, indicating that relatively intact forests occur over a 
disproportionately greater area in Roda Mas. At the same time, the density of low nMDS axis-1 
scores (nMDS axis-1 score = −1) was also nominal in Roda Mas, indicating the occurrence of current 
logging activities with reduced-impact logging techniques. The mode in Deramakot, the model site 
of sustainable forest management in Sabah, had the second highest score among the FMUs. The 
nMDS axis-1 scores of the modes among four representative FMUs were decreased in the order 
reflecting their logging intensity, history or management (Figure 4b).  

 

Figure 4. Histograms of normalized nMDS (non metric multidimensional scaling) axis-1 scores (a) in 
all FMUs, and (b) in four selected FMUs. (RIL, reduced-impact logging; CL, conventional logging). 

The mean values and 95% confidence intervals of the nMDS axis-1 scores are shown in Figure 
5, in which the six FMUs are arranged in increasing order of their mean nMDS axis-1 score. 
Deramakot, which has been designated as a model of sustainable forest management by the Sabah 
Government, recorded the highest mean score, 0.318 (CI 0.197–0.432). The second-highest score was 
0.289 (CI 0.219–0.365) in Roda Mas. The scores were 0.220 (CI 0.151–0.293) in Ratah. Tangkulap and 
Segaliud Lokan, where high-impact conventional logging continued until 2002, had relatively low 
scores of 0.192 (CI 0.094–0.290) and 0.163 (CI 0.063–0.262). Sapulut, where industrial tree plantations 
occur in approximately 35% of the area, recorded the lowest score of -0.082 (CI -0.184–0.027). 
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Overall, the mean score of Sapulut (-0.082) was significantly lower than that of the other FMUs, 
while the other FMUs did not significantly differ from one another. There was well-defined 
variation in the mean score (0.192–0.318) among the FMUs that were certified by the FSC (Figure 5), 
although the 95% confidence intervals broadly overlapped with each other among the FMUs. 

 

Figure 5. Mean values of normalized nMDS axis-1 scores in all FMUs. 

4. Discussion 

To address the increasing need for a practical method of assessing biodiversity that is spatially 
and temporally sensitive and robust, we developed an algorithm to map forest intactness based on 
tree-community composition. As a proxy for tree-community composition, we used the nMDS 
axis-1 score, a robust and sensitive indicator of forest intactness in Bornean natural production 
forests [12]. The maps based on the algorithm demonstrated a significant variation in composition 
of tree genera both among and within FMUs.  

To date, several remote sensing methods have been developed to map tree-community 
composition using imaging spectroscopy [45-49]. Where imaging spectroscopy (also known as 
hyperspectral imagery) can characterize variation in tree compositional assemblages, multispectral 
imageries (e.g., Landsat) have been considered to lack the spectral resolution to effectively 
demonstrate compositional variation [50,51]. However, our study shows that multispectral 
remote-sensing data of Landsat images are potentially useful for characterizing the variation in 
composition of tree genera caused by logging and forest degradation. The concept of mapping 
compositional gradients using remote sensing is based on the assumption that the compositional 
gradients of vegetation are related to variation in canopy traits such as reflectance spectra, foliar 
chemistry, morphological traits, canopy form, and canopy structure [48]. Clearly, Landsat imagery 
may not effectively resolve subtle intra-guild trait variation (e.g., trait variation within climax guild) 
because of the low spatial/spectral resolution; however, Landsat imagery has been proven to be 
capable of detecting inter-guild trait differences (i.e., trait differences between pioneer and climax 
guilds) [52,53] as shown by our algorithm. The reason why the proxy for community composition 
(nMDS axis-1 score) used in our study is able to reflect canopy intactness is that the nMDS axis-1 
scores can reflect the interaction of linearly increasing pioneer guild and linearly decreasing climax 
guild with increasing logging intensity [12]. Thus, the selected independent variables in our models 
and Landsat imageries reflect the interactions of these guilds. The variables selected by stepwise 
selection were principally related to SWIR reflectance and spectral heterogeneity information (i.e., 
texture and SD). SWIR reflectance is significantly related to stand age, height, volume, and biomass 
in tropical secondary forest [54]. In contrast, spectral heterogeneity information can be considered a 
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proxy for species diversity [55]. These patterns were also apparent in our study. SWIR reflectance 
was a proxy for tree growth (i.e., biomass) after logging, while texture and SD were related to the 
heterogeneity of the two major regeneration guilds. We suggest that SWIR reflectance and spectral 
heterogeneity information can reflect the interactions of the two guilds, and our algorithm is thus 
suitable for the characterization of the variation in composition of tree genera caused by logging 
disturbances.  

It should also be noted that the selected independent variables and coefficients varied among 
models. Our study area covered the entire area of Borneo, spanning a large geographic area, and 
included significant floristic differences among the tropical rain forests [56]. Therefore, the selected 
independent variables would be expected to vary among FMUs, reflecting variation in canopy 
structure and foliar traits.  

The mean adjusted R2 values (0.54–0.69) based on the cross-validation approach showed close 
correlation in all FMUs. The mean adjusted R2 values were high despite the use of 
moderate-resolution Landsat data and the semi-qualitative nature of our metrics (i.e., 
tree-community composition), which were based on the mixing ratio of the canopy genera. 
However, the range of adjusted R2 values (0.1–0.9) at the 95% confidence interval across all FMUs 
was fairly wide; this probably indicates that the number of plots used for cross validation was too 
small. Depending on the combination of plots used for developing the models, the correlation 
between the predicted and observed nMDS axis-1 scores became very low. Because of the wide 
variation in the R2 values at the 95% confidence interval, it was difficult to discriminate the FMUs 
from one another, despite the fact that the mean nMDS axis-1 scores per se differed considerably 
among FMUs (Figure 5). Overall, we were able to differentiate only one FMU with the lowest mean 
nMDS axis-1 score (Sapulut) from the other FMUs (Figure 5) in our analysis. However, our method 
is clearly useful for differentiating between intact and highly disturbed forests within each FMU 
when all 50 plots are used to develop the best model. It can identify the location and extent of intact 
forests as areas of potentially high conservation value, or those of least-intact forests where 
mitigation measures are required. In combination with a biomass estimate, our method is also 
useful for identifying the location and extent of less-intact forests with high biomass, indicative of 
plantations. It thus offers a potential tool for verifying compliance with environmental safeguards 
in REDD+, in which a primary concern is the conversion of natural forests into plantation.  

The applicability of our method was verified over a broad geographic range (0°7’S–5°20’N, 
114°25’–115°30’E) spanning the most area of Borneo. The principle of using tree-community 
composition may also be applicable to other forests outside Borneo because the occurrence of the 
two major regeneration guilds (i.e., the pioneer and climax guilds) is a common biological 
phenomenon; however, this needs to be tested in the future. One of the advantages of this method 
is the broad coverage and low cost based on Landsat imagery. Moreover, our analysis of 
community composition is based on canopy-tree genera only. As Imai et al. [12] pointed out, 
identification of canopy trees at the generic level can reduce the cost and time of identification by at 
least 60% compared with the conventional routine survey at species level. The spatial and temporal 
availability of Landsat imagery is superior to other remote sensing data, and therefore the 
Landsat-based tree-community composition map is suitable for regional and global biodiversity 
monitoring. These advantages are essential for a global biodiversity assessment of the Aichi 
Biodiversity Targets and REDD+ biodiversity safeguards. We propose a practical method 
combining count-plot surveys on the ground with Landsat remote sensing for large-scale forest 
biodiversity/ecosystem assessments of both the Aichi targets and REDD+ biodiversity safeguards in 
natural forests in the tropics. 
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