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27In this study, a multi-scale approach was used for classifying land cover in a high resolution image of an
28urban area. Pixels and image segments were assigned the spectral, texture, size, and shape information of
29their super-objects (i.e. the segments that they are located within) from coarser segmentations of the
30same scene, and this set of super-object information was used as additional input data for image classi-
31fication. The accuracies of classifications that included super-object variables were compared with the
32classification accuracies of image segmentations that did not include super-object information. The high-
33est overall accuracy and kappa coefficient achieved without super-object information was 78.11% and
340.727%, respectively. When single pixels or fine-scale image segments were assigned the statistics of their
35super-objects prior to classification, overall accuracy increased to 84.42% and the kappa coefficient
36increased to 0.804.
37� 2013 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote
38Sensing, Inc. (ISPRS).

39

40

41 1. Introduction

42 Urban land cover information extracted from high resolution
43 aerial or satellite imagery can be used for a variety of purposes,
44 including urban tree canopy mapping (Walton et al., 2008), green
45 space mapping (Lang et al., 2008), impervious surface mapping
46 (Zhou and Wang, 2008), and updating building footprint GIS data
47 (Jin and Davis, 2005). Land cover data can also be helpful for map-
48 ping urban land use (Herold et al., 2003). However, extracting land
49 cover information from high resolution data can be difficult when
50 traditional pixel-based image classification methods are used due
51 to the high degree of spectral variability within land cover classes
52 (caused by shadows, sun angle, gaps in tree canopy, etc.) that
53 causes low classification accuracy (Yu et al., 2006). This high de-
54 gree of within-class spectral variability is due to the fact that a sin-
55 gle pixel typically represents only a small part of a classification
56 target (e.g. tree canopy, building rooftop, or road) in a high-resolu-
57 tion image. The mismatch between pixels and real-world objects of
58 interest is related to the modifiable areal unit problem (MAUP;
59 Openshaw, 1984), and occurs because pixels in remote sensing
60 images are arbitrary in size and thus typically do not correspond
61 well with real-world objects. In several previous studies, a geospa-
62 tial object-based image analysis (GEOBIA or simply OBIA; Blaschke,
63 2010) approach, in which an image is segmented into relatively

64homogeneous regions (i.e. ‘‘segments’’ or ‘‘image objects’’) prior
65to classification, has outperformed the pixel-based approach
66(Thomas et al., 2003; Blaschke et al., 2004; Yu et al., 2006; Myint
67et al., 2011). In the OBIA method, the attributes of these segments
68are used for classification instead of attributes of single pixels. Use
69of segments rather than single pixels as the base units for analysis
70can reduce within-class spectral variability because representative
71values of segments (e.g. mean values) are used instead of individ-
72ual pixel values. It also allows for spatial and contextual informa-
73tion such as size, shape, texture, and topological relationships
74(e.g. containment and adjacency) to be incorporated for classifica-
75tion (Blaschke et al., 2004; Benz et al., 2004). Finally, image seg-
76ments are less sensitive to MAUP than pixels because they better
77match the objects of interest in the image (Hay and Castilla,
782006). However, the object-based approach is not without
79problems.
80One issue with the object-based approach is that classification
81accuracy is affected by image segmentation quality (Liu and Xia,
822010). Some image segmentation algorithms, such as the ‘‘Multi-
83resolution Segmentation’’ region-merging algorithm described by
84Benz et al. (2004), require users to set one or more parameters that
85influence the average size of segments produced by a segmentation
86(i.e. the segmentation scale), and choosing appropriate parameters
87can be difficult due to the fact that a single set of parameters can
88produce very different segmentation results depending on the
89properties of the imagery (e.g. bit depth, number of bands, spatial
90resolution, image heterogeneity) (Dragut et al., 2010). Choosing
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91 segmentation parameter(s) that produce segments smaller than
92 the actual ground features in an image results in over-segmenta-
93 tion, which is undesirable because non-spectral information (e.g.
94 size and shape) calculated for segments will not be useful for clas-
95 sification. Using parameter(s) that produce segments larger than
96 the actual features in an image results in under-segmentation,
97 which is undesirable because segments will contain pixels from
98 more than one type of land cover. Over-segmentation and under-
99 segmentation have both been shown to lower classification accu-

100 racy, but the effect of under-segmentation is generally considered
101 to be worse (Kim et al., 2009; Liu and Xia, 2010). To deal with this
102 scale issue, it is common to employ a multi-scale classification
103 approach that involves building a hierarchy of multiple
104 segmentations and classifying different types of land cover at each
105 segmentation scale based on expert knowledge (e.g. Burnett and
106 Blaschke, 2003; Dorren et al., 2003; Zhou and Troy, 2009; Myint
107 et al., 2011; Kim et al., 2011). However, manually choosing appro-
108 priate segmentation scale(s) and decision rules to classify each
109 type of land cover requires a detailed investigation of segments
110 at each scale, and the procedure can be time intensive and subjec-
111 tive. For more automated classification tasks (e.g. supervised clas-
112 sification using training samples), to minimize over- and under-
113 segmentation some studies have compared multiple segmenta-
114 tions of a scene prior to classification to identify the best one
115 (Kim et al., 2008; Trias-Sanz et al., 2008), while other have identi-
116 fied the optimal segmentation after classification by comparing the
117 classification accuracies of each segmented image (Dorren et al.,
118 2003; Kim et al., 2010; Liu and Xia, 2010). The main downside to
119 these single-scale supervised classification approaches is that dif-
120 ferent types of land cover may be classified better at different
121 scales, so using only one segmentation scale may not produce
122 the best results. A multi-scale supervised classification approach
123 that does not require users to investigate segments and develop
124 classification rules at each scale would be faster and less
125 subjective.
126 One possible method for classifying different types of land cover
127 at different scales comes from the fact that some segmentation
128 algorithms, such as the Multiresolution Segmentation algorithm
129 mentioned previously, produce a hierarchy in which segments
130 generated at a fine scale are nested inside of segments generated

131at coarser scales, as shown in Fig. 1. The larger segments are re-
132ferred to as super-objects of the smaller segments, and the smaller
133segments are referred to as sub-objects of the larger segments
134(Definiens, 2006). Spectral and non-spectral information (e.g. size
135and shape) of these super-objects may be useful for image classifi-
136cation purposes. For example, spectral information from the small-
137est segments may be useful for targeting individual trees, while
138size and shape information from larger super-objects may be use-
139ful for separating buildings from concrete and other surfaces spec-
140trally similar to building rooftops. Since the main problem with the
141single-scale classification approach is that not all types of land cov-
142er are segmented best at one scale, the theoretical advantages of
143this multi-scale approach are that: (i) including multiple segmen-
144tation scales for classification makes it more likely that at least one
145of them corresponds well to each type of land cover, and (ii) use of
146multi-scale variables provides information on how each type of
147land cover behaves across many scales rather than at only one
148scale. Another advantage of this approach is that it is less reliant
149on expert knowledge and less subjective than traditional multi-
150scale classification methods that require segments to be investi-
151gated at every segmentation scale in order to determine the best
152scale(s) for classifying each type of land cover.
153A previous study by Bruzzone and Carlin (2006) found that the
154use of contextual information of pixels (i.e. the spectral and non-
155spectral values of the segments that contain a pixel) increased
156the accuracy of a pixel-based land cover classification. However,
157in their study, classification accuracy was not compared with that
158achieved when a single-scale OBIA supervised classification ap-
159proach (segmentation followed by classification) was used. Since,
160as previously stated, the object-based approach has been shown
161to outperform the pixel-based approach for classification of high
162resolution imagery, it is possible that using a single-scale OBIA ap-
163proach will still work better than a pixel-based method that incor-
164porates super-object information. For this reason, it is necessary to
165compare the classification accuracy achieved when pixels are clas-
166sified using super-object information with the accuracy achieved
167using a single-scale OBIA approach in order to see which yields
168better results. Furthermore, it is necessary to compare a pixel-
169based approach that incorporates super-object information with
170an object-based approach that incorporates super-object informa-
171tion (i.e. with segments as the base units for analysis) to see which,
172if either, is preferable for classifying high resolution imagery.
173In this study, we will: (1) compare the classification accuracies
174achieved when (a) super-object information is included with (b)
175the classification accuracies achieved using traditional single-scale
176supervised classification methods, and (2) test the use of both
177single pixels and image segments as the basic units for the
178super-object classification. Although this is not the first study to
179use super-object information for classification (Bruzzone and Car-
180lin (2006) also used it), our systematic investigation of these sin-
181gle-scale and multi-scale supervised classification approaches
182should be useful for future OBIA research.
183We consider a large number of spectral and non-spectral
184variables for classification (up to 153 for the pixel-based classifica-
185tion that includes super-object information, 20 for the single-scale
186segmentations), and some statistics may be correlated, so a classi-
187fication algorithm that can handle high dimensional datasets con-
188taining some redundant variables is needed. The random forest
189algorithm proposed by Breiman (2001) was chosen for this study
190because it has been shown to perform well for classifying hyper-
191spectral images (Ham et al., 2005; Lawrence et al., 2006), which
192also contain many input variables and redundant variables. The
193random forest classifier is an ensemble classifier that uses a ran-
194dom subset of the input variables and a bootstrapped sample of
195the training data to perform a decision tree classification (Breiman,
1962001). Typically, a large number of trees are generated, and

Fig. 1. Segment generated at a fine scale (border shown as a grey line) located
within a segment generated at a coarser scale (border shown as a black line).
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197 unweighted voting is used to determine final class assignments for
198 each pixel or image segment. Some advantages of the random for-
199 est classifier are its speed, relative insensitivity to user-defined
200 parameters, insensitivity to noise and overtraining, and ability to
201 achieve results comparable to classifiers that are more computa-
202 tionally intensive (e.g. boosting) or require more parameter cali-
203 bration (e.g. support vector machines) (Breiman, 2001; Pal, 2005;
204 Gislason et al., 2006).

205 2. Study area and data

206 For this study, 30 cm resolution color infrared (CIR) digital aer-
207 ial orthoimagery of the city of Deerfield Beach, Florida, USA
208 (26�1804000N, 80�504800W), was obtained from the Broward County
209 Property Appraiser (flight date: December 31, 2008). The imagery
210 contains 8-bit data for the near infrared (NIR), red, and green spec-
211 tral bands. For our study area, we chose a 4630 pixel � 4967 pixel
212 (approximately 1400 m � 1500 m) subset that contains many of
213 the types of land cover typically found in an urban area, including
214 buildings and other sealed surfaces (concrete and asphalt), trees,
215 shrubs, grass, swimming pools, and bare soil. There are also vehi-
216 cles (cars, trucks, and boats) and shadows present in the image.
217 Since there was only one small lake in our study area, we chose

218to mask it out rather than include it for image classification pur-
219poses. The color infrared image of the study area is shown in Fig. 2.

2203. Methods

2213.1. Image segmentation

222Image segmentation was performed in Definiens Professional 5
223(currently with Trimble) using the Multiresolution Segmentation
224algorithm, which starts with one-pixel image segments, and
225merges neighboring segments together until a heterogeneity
226threshold is reached (Benz et al., 2004). The heterogeneity thresh-
227old is determined by a user-defined ‘‘scale parameter’’, as well as
228color/shape and smoothness/compactness weights. In general,
229increasing the value of the scale parameter causes the average size
230of segments to increase.
231For this study, a series of image segmentations was performed
232using seven different scale parameters (20–140 at an interval of
23320) so that the image could be analyzed at several scales. Scale
234parameters smaller than 20 produced segments that were, in gen-
235eral, over-segmented relative to all of the land cover classes of
236interest in this study, and parameters larger than 140 produced
237segments that were under-segmented relative to all land cover

Fig. 2. Color infrared image of the study area.
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238 types of interest. Segments produced using three different scale
239 parameters are shown in Fig. 3 to allow for a visual comparison.
240 The scale parameter interval of 20 was chosen in order to keep
241 the number of super-objects to a reasonable level, while still ade-
242 quately capturing the features in the image at different scales. All
243 three spectral bands were assigned equal weights for segmentation
244 because all of them may contain useful information. Color/shape
245 weights were set to 0.9/0.1 because we wanted spectral informa-
246 tion to have the most important role in the segmentation, and
247 smoothness/compactness weights were set to 0.5/0.5 because we
248 did not want to favor either compact or non-compact segments.
249 For each segment, spectral information (mean values and vari-
250 ance for each band, mean normalized difference vegetation index
251 (NDVI)), texture information (gray-level co-occurrence matrix
252 (GLCM) contrast, correlation, and entropy for the NIR band (all
253 directions)), and size/shape statistics (area, roundness, shape in-
254 dex, border index, length/width, rectangular fit, density, border
255 length, and asymmetry) were calculated. We used the NIR band
256 for GLCM texture calculations because it is the most useful spectral
257 band for classifying vegetation land cover types, and it is also use-
258 ful for non-vegetation land cover. In choosing the number of vari-
259 ables to use for image classification, we chose to err on the side of
260 using too many variables rather than too few, since the random
261 forest algorithm is capable of handling high dimensional datasets
262 and is not very sensitive to redundant variables. However, equa-
263 tions for each of the variables were investigated prior to choosing
264 them to ensure that they were not too similar. For more informa-
265 tion about the formulas used for texture and size/shape calcula-
266 tions, readers are encouraged to refer to the Definiens
267 Professional 5 Reference book (Definiens, 2006).

268 3.2. Assigning super-object statistics to segments

269 Once the statistics for each segment were calculated, a series of
270 spatial joins was performed in ArcGIS so that the smallest seg-
271 ments (i.e. segments generated using a scale parameter of 20)
272 could be assigned the spectral, texture, and size/shape statistics
273 of their super-objects as well. The end result was that segments
274 generated using a scale parameter of 20 also contained the statis-
275 tics of their super-objects generated using scale parameters from
276 40 to 140. For the sake of comparison, we also used this process
277 to assign super-object information to single pixels (in addition to
278 the spectral values and NDVI of the pixels).

2793.3. Image classification

280In this section, land cover classification is performed for: (a) im-
281age segments containing super-object statistics and (b) single pix-
282els containing super-object statistics. Classification is also
283performed for the seven segmentations that do not include
284super-object statistics in order to assess the impact that using
285super-object information has on classification. Finally, we perform
286a per-pixel classification without super-object information to allow
287for a comparison with all of the other classifications. An overview
288of the image classification workflow is shown in Fig. 4.
289To classify the segmentations that did not include super-object
290statistics, training data were collected for each type of land cover
291from segments generated using a scale parameter of 20, referred
292to from now on as the ‘‘scale 20 segmentation’’. A total of 168 seg-
293ments were used as training data for classification. Super-objects
294of these training segments were used as the training data for the
295other segmentations (i.e. super-objects from the scale 40 segmen-
296tation were used as training data to classify the scale 40 segmenta-
297tion, and so on). As an example, training segments for two different
298segmentation scales are shown in Fig. 5. For the pixel-based classi-
299fication, one pixel within each of the training segments was chosen
300as a training pixel.
301For the classifications that included super-object information,
302spatial joins were performed, as described in Section 3.2, so that
303the fine-scale training segments (or training pixels) could be as-
304signed the statistics of their super-objects. Because, as discussed
305in the Introduction section, using segments larger than the actual
306features of interest (i.e. under-segmented image objects) results
307in lower classification accuracy, we tested classification accuracy
308as super-object information from each of the coarser segmenta-
309tions was added to see if the accuracy decreased when information
310from the coarsest segmentations was included for classification.
311For example, we performed classification when super-object infor-
312mation from the scale 40 segmentation was assigned to the scale
31320 segmentation, then again when the scale 60 information was
314also added, and so on. Since over-segmentation also affects classi-
315fication accuracy, we tested different base units for classification as
316well (e.g. single pixels, scale 20 segments, and scale 40 segments).
317When the scale 20 segments were used as the base units, the val-
318ues of single pixels were not included for classification, and when
319the scale 40 segments were used as the base units, values of single
320pixels and scale 20 segments were not included for classification.
321Reference data, used for accuracy assessment, were collected
322using a stratified systematic unaligned sampling scheme (Jensen,

Fig. 3. Scale 20 (a), 80 (b), and 140 (c) segments overlaid on the color infrared imagery for a subset of the image.
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323 2005). A grid consisting of 100 m � 100 m cells was overlaid on the
324 image, and within each cell 3 random segments were chosen from
325 the scale 20 segmentation. This sampling method ensured that the
326 test data were randomly located, yet distributed across the entire
327 image. In total, the reference data consisted of 507 segments, with
328 segments being assigned to a land cover class based on visual
329 interpretation of the high-resolution imagery. Super-objects of
330 the randomly-selected reference segments were used as reference
331 data for the remaining segmentations (i.e. super-objects from the
332 scale 40 segmentation were used as reference data for the scale
333 40 segmentation, and so on). Reference data for the segmentations
334 that included super-object statistics were created by once again
335 performing spatial joins. A random point was created inside each

336of the reference segments to select reference pixels for the pixel-
337based classification that did not include super-object information.
338Random Forest classification was performed using Weka 3.6.4,
339an open-source data mining program (Hall et al., 2009). There were
340two user-defined parameters required to perform classification:
341the number of decision trees to create and the number of ran-
342domly-selected variables considered for splitting each node in a
343tree. Previous research has shown that the number of trees and
344the number of randomly-selected variables selected have a rela-
345tively small impact on classification accuracy (Breiman, 2001;
346Pal, 2005). Breiman (2001) reported good results for datasets of dif-
347ferent sizes when the number of variables was set to log2M + 1,
348where M is the number of variables, and Lawrence et al. (2006)
349found that using 500 trees or more produced unbiased estimates
350of error. Based on the previous research, we set the number of trees
351as 500, and the number of variables used for splitting each node as
352log2M + 1. These settings minimized the computation time for each
353classification because optimum parameters did not need to be
354identified, which was important for this study because a large
355number of classifications were performed.

3564. Results and discussion

3574.1. Classification system

358Image segments (or pixels for the pixel-based classifications)
359were classified into the following land cover classes: grass, trees/
360shrubs, buildings, concrete, asphalt, vehicles, bare soil, and pools.
361In some previous studies (Bruzzone and Carlin, 2006; Walker and
362Blaschke, 2008), buildings were split up into more than one class
363when training data were collected (white roof, red tile roof, etc.)
364so that spectral information would be more useful for classifying
365buildings. However, in our study area, rooftops were so diverse
366in terms of color and building materials that this was not practical.
367Instead, we used one building class that included rooftops of differ-
368ent colors, and relied more on non-spectral information for classi-
369fying buildings correctly. After classification, segments classified as
370concrete, asphalt, and vehicles were aggregated into a single land
371cover class called ‘‘other impervious’’ because concrete and asphalt
372are both impervious surfaces, and vehicles are likely to be located
373on top of an impervious surface.

Fig. 4. Flowchart of the classification methods used in this study.

Fig. 5. ‘‘Building’’ class training segment for the scale 20 segmentation (a) and the
scale 100 segmentation (b). For the scale 20 classifications that included super-
object information, scale 20 training segments were also assigned the information
of their super-objects.
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374 4.2. Overall classification accuracy

375 Overall accuracies for many of the classifications are shown in
376 Fig. 6. The highest overall accuracy (84.42%) and kappa coefficient
377 (0.804) were achieved when either pixels or scale 20 segments
378 were also assigned super-object information from the scale 40,
379 60, and 80 segmentations for classification. For a pixel-based clas-
380 sification that did not include super-object information, overall
381 accuracy (73.18%) and the kappa coefficient (0.666) were much
382 lower. For the single-scale segmentations, overall accuracy was
383 very similar when scale parameters between 20 and 60 were used,
384 with the scale 40 segmentation achieving the highest overall accu-
385 racy (78.11%) and kappa coefficient (0.727). As the scale parameter
386 was increased past 60, overall accuracy of the single-scale segmen-
387 tations decreased as segments started to consist of pixels from
388 more than one land cover class. This decrease in overall accuracy
389 as the image became more and more under-segmented is
390 consistent with results found in past studies (Kim et al., 2010;
391 Liu and Xia, 2010). Table 1 shows the error matrices for: the pix-
392 el-based classification, the optimal single-scale segmentation/clas-
393 sification, the pixel-based classification using super-object
394 information, and the scale 20 segmentation/classification using
395 super-object information. To test whether or not the increase in
396 classification accuracy achieved with super-object information
397 was statistically significant, pairwise z-tests (Congalton, 2009)
398 were calculated to compare the error matrices produced with
399 and without super-object variables. The null hypothesis of each
400 pairwise z-test is that the two error matrices being compared have
401 no significant difference. Based on the z scores, reported in Table 2,
402 the error matrices were statistically different at a 95% confidence
403 level (a = 0.05), confirming that super-object variables contributed

404significantly to improvement in classification accuracy. Fig. 7
405shows a subset of the aerial imagery, the classified scale 20 seg-
406ments with super-object information from scale 40, 60, and 80 seg-
407mentations, and the optimal single-scale segmentation/
408classification (i.e. the scale 40 segmentation) to allow for a visual
409comparison.
410In all of the cases that we tested, the use of super-object infor-
411mation improved overall accuracy. However, accuracy decreased
412slightly from its highest levels when super-object information
413from the coarsest segmentations (scale 100, 120, 140 segmenta-
414tions) was included for classification due to the fact that ground
415features surrounded by spectrally similar land cover (e.g. trees sur-
416rounded by grass, buildings surrounded by concrete/asphalt) were
417under-segmented in the coarse segmentations. Based on these re-
418sults, we recommend using super-object information for classifica-
419tion purposes, but care should be taken to avoid using super-object
420information from segmentations that are highly under-segmented.
421We also observed a decrease in overall accuracy when larger seg-
422ments were used as the base units for classification. When the base
423units were changed from scale 20 segments to scale 40 segments,
424the highest overall accuracy that was achieved decreased to 82.64%
425from 84.42%, and the kappa coefficient decreased to 0.782 from
4260.804. This decrease in accuracy occurred because small features,
427such as single trees, became under-segmented. We also tested
428the use of scale 60 segments and scale 80 segments as the base
429units for classification. The highest overall accuracy for the scale
43060 segments (80.08%) and highest kappa coefficient (0.745) was
431achieved when they were assigned super-object information from
432scale 80, 100, and 120 segments, and the highest overall accuracy
433(77.31%) and kappa coefficient (0.714) for the scale 80 segments
434were achieved when they were assigned super-object information

Fig. 6. Overall classification accuracies for the pixel-based and single-scale classifications (a), and the multi-scale classifications with: single pixels (b), scale 20 segments (c),
and scale 40 segments (d) as the base units for classification. Scale parameter of 0 indicates a pixel-based classification. For the multi-scale classifications, ‘‘Scale Parameters’’
indicate which segmentations were used for classification (e.g. ‘‘Scale Parameters’’ of 0–80 indicate that super-object variables from the scale 20, 40, 60, and 80 segmentations
was assigned to single pixels for classification).
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435from the scale 100 and 120 segments. To assess the statistical sig-
436nificance between the classifications performed with different base
437classification units, we performed the pairwise z-tests shown in
438Table 3. In this table, it is clear that there was a decrease in accu-
439racy as larger and larger segments are used as the base units, and
440this decrease became significant at a 95% confidence level (a = .05)
441when the scale 60 or coarser segments are used as the base units.
442Due to this trend, we did not perform classification using scale 100
443or larger segments as the base units. Based on our results, we rec-
444ommend that single pixels or very fine-scale segments (i.e. seg-

Table 1
Error matrices for the optimal single-scale classification (a), the optimal scale 20 classification with super-object variables (b), the pixel-based classification (c), and the optimal
pixel-based classification with super-object variables (d). Note: G, grass; T, tree; B, building; I, other impervious; SH, shadow; SO, soil; P, pool; PA, producer’s accuracy; UA, user’s
accuracy.

Reference data G T B I SH SO P Total PA (%) Reference data G T B I SH SO P Total PA (%)

(a) Classification data (b) Classification data
G 76 5 1 0 0 1 0 83 91.57 G 75 6 1 1 0 0 0 83 90.36
T 26 58 0 0 5 0 0 89 65.17 T 12 73 0 0 4 0 0 89 82.02
B 0 0 71 22 0 2 2 97 73.20 B 0 0 72 23 0 2 0 97 74.23
I 1 0 25 124 3 3 3 159 77.99 I 1 1 10 140 4 1 2 159 88.05
SH 0 0 0 3 42 0 0 45 93.33 SH 0 0 0 1 44 0 0 45 97.78
SO 4 0 2 1 0 13 0 20 65.00 SO 4 0 1 3 0 12 0 20 60.00
P 1 0 1 0 0 0 12 14 85.71 P 1 0 1 0 0 0 12 14 85.71
Total 108 63 100 150 50 19 17 507 Total 93 80 85 168 52 15 14 507
UA (%) 70.37 92.06 71.00 82.67 84.00 68.42 70.59 UA (%) 80.65 91.25 84.71 83.33 84.62 80.00 85.71

Overall accuracy 78.11% Overall accuracy 84.42%
Kappa 0.727 Kappa 0.804

(c) Classification data (d) Classification data
G 72 6 0 1 1 3 0 83 86.75 G 76 6 1 0 0 0 0 83 91.57
T 35 49 0 0 5 0 0 89 55.06 T 14 71 0 0 4 0 0 89 79.78
B 0 0 48 38 0 11 0 97 49.48 B 0 0 70 23 0 4 0 97 72.16
I 0 1 20 127 6 5 0 159 79.87 I 0 1 12 141 3 2 0 159 88.68
SH 0 0 0 1 44 0 0 45 97.78 SH 0 0 0 0 45 0 0 45 100.00
SO 0 0 0 0 0 20 0 20 100.00 SO 1 0 2 4 0 13 0 20 65.00
P 1 0 2 0 0 0 11 14 78.57 P 1 0 1 0 0 0 12 14 85.71
Total 108 56 70 167 56 39 11 507 Total 92 78 86 168 52 19 12 507
UA (%) 66.67 87.50 68.57 76.05 78.57 51.28 100.00 UA (%) 82.61 91.03 81.40 83.93 86.54 68.42 100.00

Overall accuracy 73.18% Overall accuracy 84.42%
Kappa 0.666 Kappa 0.804

Table 2
Pairwise comparison of error matrices for classifications performed with and without
super-object variables. Scale Parameter ‘‘40’’ is the most accurate single-scale
classification, ‘‘20–80’’ is the most accurate scale 20 segmentation with super-object
variables, ‘‘0’’ is the pixel-based classification, and ‘‘0–80’’ is the most accurate pixel-
based classification with super-object variables.

Scale parameter(s) Z score a Value Significant at a = 0.05?

40 vs. 20–80 2.52 0.01 Yes
0 vs. 0–80 4.37 0.00 Yes
0–80 vs 20–80 0.004 1.00 No

Fig. 7. Subset of the study area image (a), and land cover maps produced from the most accurate multi-scale (b) and single-scale (c) classifications. In general, there is a better
correspondence between the imagery and the multi-scale classification.
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445 ments no larger than any of the land cover types of interest) be
446 used as the base units for a classification that includes super-object
447 information, as the effect of over-segmentation had less of a nega-
448 tive impact on classification accuracy than under-segmentation
449 (super-object information reduces errors caused by over-segmen-
450 tation but not under-segmentation).
451 Another factor related to segmentation scale that may have had
452 an impact on our classification accuracies was that, like many
453 other OBIA studies (e.g. Liu et al., 2010; Johnson and Xie, 2011;
454 Kim et al., 2011), we used a regular interval for the selecting the
455 scale parameters. This means that our choices were somewhat
456 arbitrary and possibly not optimal for the land cover of interest.
457 Due to the huge number of possible segmentation parameter set-
458 tings, parameter optimization is very challenging. Some OBIA stud-
459 ies have used quantitative approaches to identify optimal
460 segmentations, either by comparing image segments with manu-
461 ally-digitized reference polygons (Marpu et al., 2010) or using
462 empirical ‘‘goodness measures’’ that mimic human perception of
463 a good segmentation (Kim et al., 2008; Johnson and Xie, 2011).
464 Most of these methods were designed to identify one optimal seg-
465 mentation rather an optimal multi-scale set of segmentations.
466 However, a multi-scale segmentation optimization tool called the
467 Estimation of Scale Parameter (ESP) tool, recently developed by
468 Dragut et al. (2010), allows for more than one optimal segmenta-
469 tion to be identified. Although we did not use the ESP tool in this
470 study (it was not compatible with our version of Definiens Profes-
471 sional), a possible future research topic would be to evaluate the
472 impact that ESP’s parameter optimization has on the accuracy of
473 a multi-scale supervised classification (compared to classification
474 using arbitrarily-chosen of segmentation parameters).

475 4.3. Accuracy by land cover class

476 For the pixel-based and scale 20 classifications that included
477 super-object variables from scale 40, 60, and 80 segmentations,
478 most classes achieved producer’s and user’s accuracies of 80% or
479 better. As shown in Table 1, the producer’s and user’s accuracies
480 of most land cover classes were also improved when super-object
481 variables were included for classification. The error matrices of seg-
482 ments with super-object information and pixels with super-object
483 information are very similar (z = 0.004), but for land cover classes
484 for which shape information is useful (i.e. ‘‘Building’’ and ‘‘Tree’’),
485 slightly higher producer’s and user’s accuracies were achieved
486 when segments were used as the base units for classification. For
487 these classes, the spectral information of pixels was highly variable
488 (due to different roof top colors and shadows within roof tops/tree
489 canopies), leading to lower classification accuracies. For classes
490 without regular shapes (e.g. ‘‘Grass, ‘‘Soil’’, and ‘‘Other impervious’’),
491 accuracy was slightly higher when pixels were used as the base
492 units, so we can infer that the pixel information was useful to some
493 degree for these classes.
494 Fig. 8 shows the land cover map of the entire study area pro-
495 duced when scale 20 segments were classified using super-object

496variables from scale 40, 60, and 80 segmentations. Visual compar-
497ison of the study area imagery in Fig. 2 and the classified map in
498Fig. 8 shows a relatively good correspondence. However, due to
499the spectral similarity between buildings and other land covers
500such as ‘‘Soil’’, ‘‘Buildings’’, and ‘‘Other impervious’’, there were of-
501ten some misclassifications for these classes. For example, ‘‘Soil’’
502segments on some baseball fields had shapes similar to buildings
503in the study area, so they were misclassified as ‘‘Building’’. It was
504also clear that, within the ‘‘Building’’ class, buildings surrounded
505by vegetation (most single-family houses) were classified correctly
506more often than buildings surrounded by spectrally-similar land
507cover (e.g. concrete or asphalt). This occurred because, after seg-
508mentation, some segments that contained pixels of a building also
509contained pixels of the spectrally-similar land cover surrounding
510the building, causing the segments’ shapes to be inaccurate.
511Use of additional datasets for image segmentation and classifi-
512cation, such as Light Detection and Ranging (LIDAR) height data,
513would likely lead to fewer classification errors for buildings and
514trees surrounded by spectrally-similar land covers. However, while
515multispectral aerial imagery of the study area is typically acquired
516annually by the Broward County Property Appraiser’s Office, LIDAR
517acquisition is rarer (LIDAR imagery is only available for 2004 and
5182007). To assess the level of overall accuracy that could be
519achieved on an annual basis, we used only multispectral imagery
520in this study.

5214.4. Relationship between classified segments and real-world objects

522As previously discussed, we found that the use of spectral and
523non-spectral variables from super-objects of pixels or fine-scale
524image segments led to higher overall accuracy than when variables
525from a single scale were used for classification. However, the lim-
526itation we encountered with using pixels/small segments as the
527base units for classification was that they were smaller than most
528of the real-world objects of interest. For example, a tree or building
529often consisted of several segments or pixels, rather than just one.
530For this reason, we emphasize that the pixels and image segments
531classified using the methods described in this study contained
532accurate categorical information (i.e. class assignment), but they
533did not have a good one-to-one relationship with real-world ob-
534jects of interest. We were only interested in the accuracy of the cat-
535egorical information in this study because for our application

Table 3
Pairwise comparison of error matrices for classifications that included super-object
variables, performed using different scales of segments as the base units. ‘‘20–80’’ is
the most accurate scale 20 segmentation with super-object variables, ‘‘40–120’’ is the
most accurate scale 40 segmentation with super-object variables, and ‘‘60–120’’ is the
most accurate scale 60 segmentation with super-object variables, and ‘‘80–120’’ is the
most accurate scale 80 segmentation with super-object variables.

Scale Parameters Z score a Value Significant at a = 0.05?

40–120 vs. 20–80 0.75 0.45 No
60–120 vs. 20–80 1.95 0.05 Yes
80–120 vs. 20–80 2.91 0.00 Yes

Fig. 8. Classified map of the study area, produced by classifying scale 20 segments
with super-object variables from scale 40, 60, and 80 segments.
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536 (creating an urban land cover map) it was not important whether a
537 land cover object consisted of one or multiple classified segments,
538 as long as the segments were assigned to the correct class. For that
539 reason, like similar OBIA studies (e.g. Bruzzone and Carlin, 2006;
540 Liu et al., 2010; Kim et al., 2011), we used the classical categorical
541 accuracy assessment measures originally developed for pixel-
542 based classifications (e.g. producer’s accuracy, user’s accuracy,
543 etc.). In contrast, some OBIA studies have also considered the spa-
544 tial accuracy of image segments (i.e. the accuracy of segment
545 boundaries) in the accuracy assessment procedure (e.g. Tiede
546 et al., 2010). Including measures that also quantify the spatial
547 accuracy of segment boundaries can be very useful for some appli-
548 cations, particularly when it is important to get accurate counts
549 and/or area estimates of the objects of interest (since under-seg-
550 mentation or over-segmentation would distort the counts and area
551 estimates). For example, accurate segment boundaries would be
552 important for a study that aimed to identify the number of trees
553 or buildings in an image, or estimate each tree’s canopy size/each
554 building’s footprint. When pixels or small segments are the base
555 units for classification, this type of analysis is not possible without
556 further processing. Merging adjacent pixels or segments of the
557 same land cover class together (e.g. merging neighboring ‘‘Build-
558 ing’’ segments into a single building) may provide more accurate
559 boundaries and a more accurate count of the number of features,
560 but this will not work well if two ground features of the same land
561 cover class are adjacent to one another. For example, a group of
562 trees will be mapped as just one tree if the neighboring pixels or
563 segments are merged together. Another possible solution involves
564 modifying image segment boundaries after classification (e.g.
565 smoothing polygon boundaries, splitting or merging segments)
566 using expert knowledge (i.e. decision rules) and/or additional input
567 data layers (Tiede et al., 2010).

568 5. Conclusions

569 In this study, we found that when super-object information was
570 incorporated for supervised classification of a high resolution im-
571 age of an urban area, overall accuracy was significantly higher than
572 when a single-scale supervised classification approach was used.
573 Overall accuracy for the best classification was 84.42%, and most
574 land cover classes achieved producer’s and user’s accuracies of
575 80% or better. We performed classification as super-object infor-
576 mation from each of the coarser segmentations was added as vari-
577 ables for classifying the base units (i.e. single pixels or small image
578 segments), and found that overall accuracy increased as super-ob-
579 ject information was added up to a certain point (scale parameter
580 of 80), after which it decreased slightly as segments became larger
581 than the actual features of interest. We also tested pixels and im-
582 age segments as the base units for the classifications that included
583 super-object information, and found that results were best when
584 pixels or small segments were used. When larger segments were
585 used as the base units, classification accuracy decreased due to un-
586 der-segmentation of small features (e.g. single trees) and features
587 surrounded by spectrally-similar land covers (e.g. buildings sur-
588 rounded by concrete/asphalt, trees surrounded by grass).
589 For future studies, it may be interesting to test the use of differ-
590 ent feature selection algorithms prior to classification to see if re-
591 sults further improve, and to compare classification accuracy
592 achieved by the random forest algorithm with results obtained
593 using other classification algorithms. Use of additional input data,
594 such as LIDAR height information, may also improve results. Clas-
595 sification methods that incorporate super-object information
596 should also be tested in other types of environments (forested
597 areas, wetlands, etc.) to see if they are applicable in non-urban
598 areas where features have more irregular sizes and shapes. Finally,

599further research is necessary to identify methods for grouping the
600classified pixels/image segments into units that more closely
601approximate features of interest such as individual buildings or
602trees.
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